
I think Willingham is onto something here. We have all become educators because we want our students to be successful… and we want to do our best to help them do well. However, we are often so eager to get the results we want, that we don’t take enough time to allow our students to think… to explore… to make sense of the math… to realize WHY we are learning what we are learning. In our eagerness to have our students get answers, we often miss the developmental pieces that our students need to be successful!
Dan Meyer gave us a nice little list of reminders that might help us allow our students more time to “develop the question” and student thinking here:
For me though, I think all of this can boil down to 3 simple beliefs:
- We want our students to understand concepts (the why) first. Thinking through concepts, making things make sense first helps build procedural knowledge. Making sure my students have both conceptual understanding and procedural fluency is important to me, but I believe that the concepts need time to develop. Jumping to procedures too quickly stunts concept development.
- We understand things at the visual level first. All students can enter the conversation when we ask them to use visual clues first. Starting with symbols, on the other hand (numbers, operation signs, formulas…), might disconnect the mathematics from what makes sense for many of our students.
- We want our students to be able to develop reasoning skills! Spatial reasoning, algebraic reasoning, proportional reasoning… understanding mathematics is all about being able to THINK mathematically. If we want our students to have the ability to reason, we need to start with tasks that help them develop their reasoning strategies. “Answer Getting” strategies are helpful when we want 1 specific way to answer 1 specific type of question. However, if we start here, our students will come to see mathematics as a series of unrelated things to memorize. More often then not, students who are taught “answer getting” strategies first lack the ability to translate their original strategies to new situations.
The 3 items on the left are about understanding… thinking… making the math make sense… while the 3 on the right focus on being able to do the skills of math. Personally, I believe that concepts, visuals, reasoning are more important for our students to develop, however, I understand that not everyone would agree with me here.
If you do think that procedures or symbols or “answer getting” strategies are more important, then I think the best way to help ALL of our students to get there, is to focus on concepts, visuals, reasoning. Slow down and make sure OUR STUDENTS are making sense of things before WE jump into symbols, procedures and strategies.
Let’s take a look at a quick example:
Mean:
If we are to start learning about the “mean” of a set of data, how do we introduce it? Instead of starting with a procedure or “answer getting strategy” (add them up and divide by the number of items), we need to think about how our students can make sense of the math using what they already understand. What visual could we introduce that would help our students use their reasoning skills to develop a conceptual understanding of “mean”? How about this:
On average, how many books does Maria read per month? 1, 2, 3, 4, 5, 6…?
If our students have never thought about “average” before, what might they do here? How might their visual / spatial reasoning help them make this make sense? Hopefully, we might notice that January could be redistributed onto other months. How might students see this happening?
Or…
Maybe we offer students opportunities to problem solve with manipulatives. Offer everyone Snap Cubes and post this problem:
What would the price be if each of the games cost the same amount?

Understanding this would help us understand 1 interpretation of how we can conceptualize “mean”. However, other students might think about mean more like a statistician might by thinking about the “balance point”. Take a look:

In the end, we need all of our students to be able to make sense of problems like this one:
How would you solve this problem? Is there more than 1 way to calculate the mean? Do I need to calculate the mean first? How did you determine the test scores for Todd?
If we were to focus on mean conceptually, we would likely have students who understood the procedures in ways that they are ready to use them in different ways… If we focused on visuals we would likely have students who could mentally reason these numbers on a number line… If we focused on reasoning, we would likely have students who were ready to adapt because they were used to making sense of things…
I leave you again with Willingham’s quote:
How do you help your students make connections between visuals and concepts… between various representations and symbols… between and among different but related concepts… between concepts and procedures… between reasoning and answer getting strategies?
When we help orchestrate situations where our students make these connections, we are building mathematical thinkers… we are building mathematicians!