Reasoning & Proving

This week I had the pleasure to see Dan Meyer, Cathy Fosnot and Graham Fletcher at OAME’s Leadership conference.

leadership oame

Each of the sessions were inspiring and informative… but halfway through the conference I noticed a common message that the first 2 keynote speakers were suggesting:

Capture

Dan Meyer showed us several examples of what mathematical surprise looks like in mathematics class (so students will be interested in making sense of what they are learning, and to get our students really thinking), while Cathy Fosnot shared with us how important it is for students to be puzzled in the process of developing as young mathematicians.  Both messages revolved around what I would consider the most important Process Expectation in the Ontario curriculum – Reasoning and Proving.


Reasoning and Proving

While some see Reasoning and Proving as being about how well an answer is constructed for a given problem – how well communicated/justified a solution is – this is not at all how I see it.  Reasoning is about sense-making… it’s about generalizing why things work… it’s about knowing if something will always, sometimes or never be true…it is about the “that’s why it works” kinds of experiences we want our students engaged in.  Reasoning is really what mathematics is all about.  It’s the pursuit of trying to help our students think mathematically (hence the name of my blog site).


A Non-Example of Reasoning and Proving

In the Ontario curriculum, students in grade 7 are expected to be able to:

  • identify, through investigation, the minimum side and angle information (i.e.,side-side-side; side-angle-side; angle-side-angle) needed to describe a unique triangle

Many textbooks take an expectation like this and remove the need for reasoning.  Take a look:

triangle congruency

As you can see, the textbook here shares that there are 3 “conditions for congruence”.  It shares the objective at the top of the page.  Really there is nothing left to figure out, just a few questions to complete.  You might also notice, that the phrase “explain your reasoning” is used here… but isn’t used in the sense-making way suggested earlier… it is used as a synonym for “show your work”.  This isn’t reasoning!  And there is no “identifying through investigation” here at all – as the verbs in our expectation indicate!


A Example of Reasoning and Proving

Instead of starting with a description of which sets of information are possible minimal information for triangle congruence, we started with this prompt:

Triangles 2

Given a few minutes, each student created their own triangles, measured the side lengths and angles, then thought of which 3 pieces of information (out of the 6 measurements they measured) they would share.  We noticed that each successful student either shared 2 angles, with a side length in between the angles (ASA), or 2 side lengths with the angle in between the sides (SAS).  We could have let the lesson end there, but we decided to ask if any of the other possible sets of 3 pieces of information could work:

triangles 3

While most textbooks share that there are 3 possible sets of minimal information, 2 of which our students easily figured out, we wondered if any of the other sets listed above will be enough information to create a unique triangle.  Asking the original question didn’t offer puzzlement or surprise because everyone answered the problem without much struggle.  As math teachers we might be sure about ASA, SAS and SSS, but I want you to try the other possible pieces of information yourself:

Create triangle ABC where AB=8cm, BC=6cm, ∠BCA=60°

Create triangle FGH where ∠FGH=45°, ∠GHF=100°, HF=12cm

Create triangle JKL where ∠JKL=30°, ∠KLJ=70°, ∠LJK=80°

If you were given the information above, could you guarantee that everyone would create the exact same triangles?  What if I suggested that if you were to provide ANY 4 pieces of information, you would definitely be able to create a unique triangle… would that be true?  Is it possible to supply only 2 pieces of information and have someone create a unique triangle?  You might be surprised here… but that requires you to do the math yourself:)


Final Thoughts

Graham Fletcher in his closing remarks asked us a few important questions:

Graham Fletcher
  • Are you the kind or teacher who teaches the content, then offers problems (like the textbook page in the beginning)?  Or are you the kind of teacher who uses a problem to help your students learn?
  • How are you using surprise or puzzlement in your classroom?  Where do you look for ideas?
  • If you find yourself covering information, instead of helping your students learn to think mathematically, you might want to take a look at resources that aim to help you teach THROUGH problem solving (I got the problem used here in Marian Small’s new Open Questions resource).  Where else might you look?
  • What does Day 1 look like when learning a new concept?
  • Do you see Reasoning and Proving as a way to have students to show their work (like the textbook might suggest) or do you see Reasoning and Proving as a process of sense-making (as Marian Small shares)?
  • Do your students experience moments of cognitive disequilibrium… followed by time for them to struggle independently or with a partner?  Are they regularly engaged in sense-making opportunities, sharing their thinking, debating…?
  • The example I shared here isn’t the most flashy example of surprise, but I used it purposefully because I wanted to illustrate that any topic can be turned into an opportunity for students to do the thinking.  I would love to discuss a topic that you feel students can’t reason through… Let’s think together about if it’s possible to create an experience where students can experience mathematical surprise… or puzzlement… or be engaged in sense-making…  Let’s think together about how we can make Reasoning and Proving a focus for you and your students!

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Advertisements

Reasoning and Proving

This week I had the pleasure to see Dan Meyer, Cathy Fosnot and Graham Fletcher at OAME’s Leadership conference.

leadership oame

Each of the sessions were inspiring and informative… but halfway through the conference I noticed a common message that the first 2 keynote speakers were suggesting:

Capture

Dan Meyer showed us several examples of what mathematical surprise looks like in mathematics class (so students will be interested in making sense of what they are learning), while Cathy Fosnot shared with us how important it is for students to be puzzled in the process of developing as young mathematicians.  Both messages revolved around what I would consider the most important Process Expectation in the Ontario curriculum – Reasoning and Proving.


Reasoning and Proving

While some see Reasoning and Proving as being about how well an answer is constructed for a given problem – how well communicated/justified a solution is – this is not at all how I see it.  Reasoning is about sense-making… it’s about generalizing why things work… it’s about knowing if something will always, sometimes or never be true…it is about the “that’s why it works” kinds of experiences we want our students engaged in.  Reasoning is really what mathematics is all about.  It’s the pursuit of trying to help our students think mathematically (hence the name of my blog site).


A Non-Example of Reasoning and Proving

In the Ontario curriculum, students in grade 7 are expected to be able to:

  • identify, through investigation, the minimum side and angle information (i.e.,side-side-side; side-angle-side; angle-side-angle) needed to describe a unique triangle

Many textbooks take an expectation like this and remove the need for reasoning.  Take a look:

triangle congruency

As you can see, the textbook here shares that there are 3 “conditions for congruence”.  It shares the objective at the top of the page.  Really there is nothing left to figure out, just a few questions to complete.  You might also notice, that the phrase “explain your reasoning” is used here… but isn’t used in the sense-making way suggested earlier… it is used as a synonym for “show your work”.  This isn’t reasoning!  And there is no “identifying through investigation” here at all – as the verbs in our expectation indicate!


A Example of Reasoning and Proving

Instead of starting with a description of which sets of information are possible minimal information for triangle congruence, we started with this prompt:

Triangles 2

Given a few minutes, each student created their own triangles, measured the side lengths and angles, then thought of which 3 pieces of information (out of the 6 measurements they measured) they would share.  We noticed that each successful student either shared 2 angles, with a side length in between the angles (ASA), or 2 side lengths with the angle in between the sides (SAS).  We could have let the lesson end there, but we decided to ask if any of the other possible sets of 3 pieces of information could work:

triangles 3

While most textbooks share that there are 3 possible sets of minimal information, 2 of which our students easily figured out, we wondered if any of the other sets listed above will be enough information to create a unique triangle.  Asking the original question didn’t offer puzzlement or surprise because everyone answered the problem without much struggle.  As math teachers we might be sure about ASA, SAS and SSS, but I want you to try the other possible pieces of information yourself:

Create triangle ABC where AB=8cm, BC=6cm, ∠BCA=60°

Create triangle FGH where ∠FGH=45°, ∠GHF=100°, HF=12cm

Create triangle JKL where ∠JKL=30°, ∠KLJ=70°, ∠LJK=80°

If you were given the information above, could you guarantee that everyone would create the exact same triangles?  What if I suggested that if you were to provide ANY 4 pieces of information, you would definitely be able to create a unique triangle… would that be true?  Is it possible to supply only 2 pieces of information and have someone create a unique triangle?  You might be surprised here… but that requires you to do the math yourself:)


Final Thoughts

Graham Fletcher in his closing remarks asked us a few important questions:

Graham Fletcher

  • Are you the kind or teacher who teaches the content, then offers problems (like the textbook page in the beginning)?  Or are you the kind of teacher who uses a problem to help your students learn?
  • How are you using surprise or puzzlement in your classroom?  Where do you look for ideas?
  • If you find yourself covering information, instead of helping your students learn to think mathematically, you might want to take a look at resources that aim to help you teach THROUGH problem solving (I got the problem used here in Marian Small’s new Open Questions resource).  Where else might you look?
  • What does Day 1 look like when learning a new concept?
  • Do you see Reasoning and Proving as a way to have students to show their work (like the textbook might suggest) or do you see Reasoning and Proving as a process of sense-making (as Marian Small shares)?
  • Do your students experience moments of cognitive disequilibrium… followed by time for them to struggle independently or with a partner?  Are they regularly engaged in sense-making opportunities, sharing their thinking, debating…?
  • The example I shared here isn’t the most flashy example of surprise, but I used it purposefully because I wanted to illustrate that any topic can be turned into an opportunity for students to do the thinking.  I would love to discuss a topic that you feel students can’t reason through… Let’s think together about if it’s possible to create an experience where students can experience mathematical surprise… or puzzlement… or be engaged in sense-making…  Let’s think together about how we can make Reasoning and Proving a focus for you and your students!

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Rushing for Interventions

I see students working in groups all the time…  Students working collaboratively in pairs or small groups having rich discussions as they sort shapes by specific properties, students identifying and extending their partner’s visual patterns, students playing games aimed at improving their procedural fluency, students cooperating to make sense of a low-floor/high-ceiling problem…..

When we see students actively engaged in rich mathematics activities, working collaboratively, it provides opportunities for teachers to effectively monitor student learning (notice students’ thinking, provide opportunities for rich questioning, and lead to important feedback and next steps…) and prepare the teacher for the lesson close.  Classrooms that engage in these types of cooperative learning opportunities see students actively engaged in their learning.  And more specifically, we see students who show Agency, Ownership and Identity in their mathematics learning (See TruMath‘s description on page 10).


On the other hand, some classrooms might be pushing for a different vision of what groups can look like in a mathematics classroom.  One where a teachers’ role is to continually diagnose students’ weaknesses, then place students into ability groups based on their deficits, then provide specific learning for each of these groups.  To be honest, I understand the concept of small groups that are formed for this purpose, but I think that many teachers might be rushing for these interventions too quickly.

First, let’s understand that small group interventions have come from the RTI (Response to Intervention) model.  Below is a graphic created by Karen Karp shared in Van de Walle’s Teaching Student Centered Mathematics to help explain RTI:

rti2
Response to Intervention – Teaching Student Centered Mathematics

As you can see, given a high quality mathematics program, 80-90% of students can learn successfully given the same learning experiences as everyone.  However, 5-10% of students (which likely are not always the same students) might struggle with a given topic and might need additional small-group interventions.  And an additional 1-5% might need might need even more specialized interventions at the individual level.

The RTI model assumes that we, as a group, have had several different learning experiences over several days before Tier 2 (or Tier 3) approaches are used.  This sounds much healthier than a model of instruction where students are tested on day one, and placed into fix-up groups based on their deficits, or a classroom where students are placed into homogeneous groupings that persist for extended periods of time.


Principles to Action (NCTM) suggests that what I’m talking about here is actually an equity issue!

P2A
Principles to Action

We know that students who are placed into ability groups for extended periods of time come to have their mathematical identity fixed because of how they were placed.  That is, in an attempt to help our students learn, we might be damaging their self perceptions, and therefore, their long-term educational outcomes.


Tier 1 Instruction

intervention

While I completely agree that we need to be giving attention to students who might be struggling with mathematics, I believe the first thing we need to consider is what Tier 1 instruction looks like that is aimed at making learning accessible to everyone.  Tier 1 instruction can’t simply be direct instruction lessons and whole group learning.  To make learning mathematics more accessible to a wider range of students, we need to include more low-floor/high-ceiling tasks, continue to help our students spatalize the concepts they are learning, as well as have a better understanding of developmental progressions so we are able to effectively monitor student learning so we can both know the experiences our students will need to be successful and how we should be responding to their thinking.  Let’s not underestimate how many of our students suffer from an “experience gap”, not an “achievement gap”!

If you are interested in learning more about what Tier 1 instruction can look like as a way to support a wider range of students, please take a look at one of the following:


Tier 2 Instruction

Tier 2 instruction is important.  It allows us to give additional opportunities for students to learn the things they have been learning over the past few days/weeks in a small group.  Learning in a small group with students who are currently struggling with the content they are learning can give us opportunities to better know our students’ thinking.  However, I believe some might be jumping past Tier 1 instruction (in part or completely) in an attempt to make sure that we are intervening. To be honest, this doesn’t make instructional sense to me! If we care about our content, and care about our students’ relationship with mathematics, this might be the wrong first move.

So, let’s make sure that Tier 2 instruction is:

  • Provided after several learning experiences for our students
  • Flexibly created, and easily changed based on the content being learned at the time
  • Focused on student strengths and areas of need, not just weaknesses
  • Aimed at honoring students’ agency, ownership and identity as mathematicians
  • Temporary!

If you are interested in learning more about what Tier 2 interventions can look like take a look at one of the following:


Instead of seeing mathematics as being learned every day as an approach to intervene, let’s continue to learn more about what Tier 1 instruction can look like!  Or maybe you need to hear it from John Hattie:

Or from Jo Boaler:


Final Thoughts

If you are currently in a school that uses small group instruction in mathematics, I would suggest that you reflect on a few things:

  • How do your students see themselves as mathematicians?  How might the topics of Agency, Authority and Identity relate to small group instruction?
  • What fixed mindset messaging do teachers in your building share “high kids”, “level 2 students”, “she’s one of my low students”….?  What fixed mindset messages might your students be hearing?
  • When in a learning cycle do you employ small groups?  Every day?  After several days of learning a concept?
  • How flexible are your groups?  Are they based on a wholistic leveling of your students, or based specifically on the concept they are learning this week?
  • How much time do these small groups receive?  Is it beyond regular instructional timelines, or do these groups form your Tier 1 instructional time?
  • If Karp/Van de Walle suggests that 80-90% of students can be successful in Tier 1, how does this match what you are seeing?  Is there a need to learn more about how Tier 1 approaches can meet the needs of this many students?
  • What are the rest of your students doing when you are working with a small group?  Is it as mathematically rich as the few you’re working with in front of you?
  • Do you believe that all of your students are capable to learn mathematics and to think mathematically?

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).