## “The More Strategies, the Better?

As many teachers implement number talks/math strings and lessons where students are learning through problem solving, the idea that there are many ways to answer a question or problem becomes more important. However, I think we need to unpack the beliefs and practices surrounding what it means for our students to have different “strategies”. A few common beliefs and practices include:

Really, there are benefits and issues with each of these thoughts…. and the right answer is actually really much more complicated than any of these.  To help us consider where our own decisions lie, let’s start by considering an actual example. If students were given a pattern with the first 4 terms like this:

…and asked how many shapes there would be on the 24th design (how many squares and circles in total).  Students could tackle this in many ways:

• Draw out the 24th step by building on and keeping track of each step number
• Build the 24th step by adding on and keeping track of the step number
• Make a T-table and use skip counting to find each new step (5, 9, 13, 17…).
• Find the explicit rule from the first few images’ data placed on a T-table (“I see the pattern is 5, 9, 13, 17. each new image uses 4 new shapes, so the pattern is a multiplied by 4 pattern…. and I think the rule should be ‘number of images = step number x4+1’. Let me double check…”).
• Notice the “constant” and multiplicative aspects of the visual, then find the explicit rule (I see that each image increases by 4 new shapes on the right, so the multiplicative aspect of this pattern is x4, and term 0 might just be 1 circle. So the pattern must be x4+1″).
• Create a graph, then find the explicit rule based on starting point and growth (“When I graph this, my line hits the y-axis at 1, and increases by 4 each time, so the pattern rule must be x4+1”).

While each of these might offer a correct answer, we as the teacher need to assess (figure out what our students are doing/thinking) and then decide on how to react accordingly.  If a student is using an additive strategy (building each step, or creating a t-table with every line recorded using skip counting), their strategy is a very early model of understanding here and we might want to challenge this/these students to find or use other methods that use multiplicative reasoning.  Saying “do it another way” might be helpful here, but it might not be helpful for other students.  If on the other hand, a student DID use multiplicative reasoning, and we suggest “do it another way”, then they fill out a t-table with every line indicated, we might actually be promoting the use of less sophisticated reasoning.

On the other hand, if we tell/show students exactly how to find the multiplicative rule, and everyone is doing it well, then I would worry that students would struggle with future learning.  For example, if everyone is told to make a t-table, and find the recursive pattern (above would be a recursive pattern of+4 for total shapes), then use that as the multiplicative basis for the explicit rule x4 to make x4+1), then students are likely just following steps, and are not internalizing what specifically in the visual pattern here is +4 or x4… or where the constant of +1 is.  I would expect these students to really struggle with figuring out patterns like the following that is non-linear:

Students told to start with a t-table and find the explicit pattern rule are likely not even paying attention to what in the visual is growing, how it is growing or what is constant between each figure. So, potentially, moving students too quickly to the most sophisticated models will likely miss out on the development necessary for them to be successful later.

While multiple strategies are helpful to know, it is important for US to know which strategies are early understandings, and which are more sophisticated.  WE need to know which students to push and when to allow everyone to do it THEIR way, then hold a math congress together to discuss relationships between strategies, and which strategies might be more beneficial in which circumstance. It is the relationships between strategies that is the MOST important thing for us to consider!

## Focusing on OUR Understanding:

In order for us to know which sequence of learning is best for our students, and be able to respond to our students’ current understandings, we need to be aware of how any particular math concepts develops over time. Let’s be clear, understanding and using a progression like this takes time and experience for US to understand and become comfortable with.

While most educational resources are filled with lessons and assessment opportunities, very few offer ideas for us as teachers about what to look for as students are working, and how to respond to different students based on their current thinking. This is what Deborah Ball calls “Math Knowledge for Teaching”:

If any teacher wants to improve their practice, I believe this is the space that will have the most impact! If schools are interested in improving math instruction, helping teachers know what to look for, and how to respond is likely the best place to tackle. If districts are aiming for ways to improve, helping each teacher learn more about these progressions will likely be what’s going to make the biggest impacts!

## Where to Start?

If you want to deepen our understanding of the math we teach, including better understanding how math develops over time, I would suggest:

• Providing more open questions, and looking at student samples as a team of teachers
• Using math resources that have been specifically designed with progressions in mind (Cathy Fosnot’s Contexts for Learning and minilessons, Cathy Bruce & Ruth Beatty’s From Patterns to Algebra, Alex Lawson’s What to Look For…), and monitoring student strategies over time
• Anticipating possible student strategies, and using a continuum or landscape (Cathy Fosnot’s Landscapes, Lawson’s Continua, Clement’s Trajectories, Van Hiele’s levels of geometric thought…) as a guide to help you see how your students are progressing
• Collaborate with other educators using resources designed for teachers to deepen their understanding and provide examples for us to use with kids (Marian Small’s Understanding the Math we Teach, Van de Walle’s Teaching Student Centered Mathematics, Alex Lawsons’s What to Look For, Doug Clements’ Learning and Teaching Early Math…)
• Have discussions with other math educators about the math you teach and how students develop over time.

## Questions to Reflect on:

• How do you typically respond to your students when you give them opportunities to share their thinking? Which of the 3 beliefs/practices is most common for you? How might this post help you consider other beliefs/practices?
• How can you both honour students’ current understandings, yet still help students progress toward more sophisticated understandings?
• Given that your students’ understandings at the beginning of any new learning differ greatly, how do you both learn about your students’ thoughts and respond to them in ways that are productive? (This is different than testing kids prior knowledge or sorting students by ability. See Daro’s video)
• Who do you turn to to help you think more about the math you teach, or they ways you respond to students? What professional relationships might be helpful for you?

If interested in this topic, you might be interested in reading:

## Noticing and Wondering: A powerful tool for assessment

Last week I had the privilege of presenting with Nehlan Binfield at OAME on the topic of assessment in mathematics.  We aimed to position assessment as both a crucial aspect of teaching, yet simplify what it means for us to assess effectively and how we might use our assessments to help our students and class learn.  If interested, here is an abreviated version of our presentation:

We started off by running through a Notice and Wonder with the group.  Given the image above, we noticed colours, sizes, patterns, symmetries (line symmetry and rotational symmetry), some pieces that looked like “trees” and other pieces that looked like “trees without stumps”…

Followed by us wondering about how many this image would be worth if a white was equal to 1, and what the next term in a pattern would look like if this was part of a growing pattern…

We didn’t have time, but if you are interested you can see the whole exchange of how the images were originally created in Daniel Finkel’s quick video.

We then continued down the path of noticing and wondering about the image above.  After several minutes, we had come together to really understand the strategy called Notice and Wonder:

As well as taking a quick look at how we can record our students’ thinking:

At this point in our session, we changed our focus from Noticing and Wondering about images of mathematics, to noticing and wondering about our students’ thinking.  To do this, we viewed the following video (click here to view) of a student attempting to find the answer of what eight, nine-cent stamps would be worth:

The group noticed the student in the video counting, pausing before each new decade, using two hands to “track” her thinking…  The group noticed that she used most of a 10-frame to think about counting by ones into groups of 9.

We then asked the group to consider the wonders about this student or her thinking and use these wonders to think about what they would say or do next.

• Would you show her a strategy?
• Would you suggest a tool?
Would you give her a different question?

It seemed to us, that the most common next steps might not be the ones that were effectively using our assessment of what this child was actually doing.

Looking through Fosnot’s landscape we noticed that this student was using a “counting by ones” strategy (at least when confronted with 9s), and that skip-counting and repeated addition were the next strategies on her horizon.

While many teachers might want to jump into helping and showing, we invited teachers to first consider whether or not we were paying attention to what she WAS actually doing, as opposed to what she wasn’t doing.

This led nicely into a conversation about the difference between Assessment and Evaluation.  We noticed that we many talk to us about “assessment”, they actually are thinking about “evaluation”.  Yet, if we are to better understand teaching and learning of mathematics, assessment seems like a far better option!

So, if we want to get better at listening interpretively, then we need to be noticing more:

Yet still… it is far too common for schools to use evaluative comments.  The phrases below do not sit right with me… and together we need to find ways to change the current narrative in our schools!!!

Evaluation practices, ranking kids, benchmarking tests… all seem to be aimed at perpetuating the narrative that some kids can’t do math… and distracts us from understanding our students’ current thinking.

So, we aimed our presentation at seeing other possibilities:

To continue the presentation, we shared a few other videos of student in the processs of thinking (click here to view the video).  We paused the video directly after this student said “30ish” and asked the group again to notice and wonder… followed by thinking about what we would say/do next.

Followed by another quick video (click here to view).  We watched the video up until she says “so it’s like 14…”.  Again, we noticed and wondered about this students’ thinking… and asked the group what they would say or do next.

After watching the whole video, we discussed the kinds of questions we ask students:

If we are truly aimed at “assessment”, which basically is the process of understanding our students’ thinking, then we need to be aware of the kinds of questions we ask, and our purpose for asking those questions!  (For more about this see link).

We finished our presentation off with a framework that is helpful for us to use when thinking about how our assessment data can move our class forward:

We shared a selection of student work and asked the group to think about what they noticed… what they wonderered… then what they would do next.

So, let’s remember what is really meant by “assessing” our students…

…and be aware that this might be challenging for us…

…but in the end, if we continue to listen to our students’ thinking, ask questions that will help us understand their thoughts, continue to press our students’ thinking, and bring the learning together in ways where our students are learning WITH and FROM each other, then we will be taking “a giant step toward becoming a master teacher”!

#### So I’ll leave you with some final thoughts:

• What do comments sound like in your school(s)?  Are they asset based (examples of what your students ARE doing) or deficit based (“they can’t multiply”… “my low kids don’t get it…”)?
• What do you do if you are interested in getting better at improving your assessment practices like we’ve discussed here, but your district is asking for data on spreadsheets that are designed to rank kids evaluatively?
• What do we need to do to change the conversation from “level 2 kids” (evaluative statements that negatively impact our students) to conversations about what our students CAN do and ARE currently doing?
•  What math knowledge is needed for us to be able to notice mathematicially important milestones in our students?  Can trajectories or landscapes or continua help us know what to notice better?

If you are interested in reading more on similar topics, might I suggest:

Or take a look at the whole slide show here

## Pick a Quote

Seems to me that many schools and districts are asking questions about assessment in mathematics.  So, I thought I would share a few quotes that might get you to think and reflect on your views about what it means to assess, why there might be a focus on assessment, and what our goals and ideals might look like.  I want you to take a look at the following quotes.  Pick 1 or 2 that stands out to you:

A few things to reflect on as you think about the quotes above:

• Which quotes caught your eye?  Did you pick one(s) that confirm things you already believe or perhaps ones that you hadn’t spent much time thinking about before?
• Some of the above quotes speak to “assessment” while others speak to evaluation practices.  Do you know the difference?
• Take a look again at the list of quotes and find one that challenges your thinking.  I’ve probably written about the topic somewhere.  Take a look in the Links to read more about that topic.
• Why do you think so many discuss assessment as a focus in mathematics?  Maybe Linda Gojak’s article Are We Obsessed with Assessment? might provide some ideas.
• Instead of talking in generalities about topics like assessment, maybe we need to start thinking about better questions to ask, or thinking deeper about what is mathematically important, or understanding how mathematics develops!