Rushing for Interventions

I see students working in groups all the time…  Students working collaboratively in pairs or small groups having rich discussions as they sort shapes by specific properties, students identifying and extending their partner’s visual patterns, students playing games aimed at improving their procedural fluency, students cooperating to make sense of a low-floor/high-ceiling problem…..

When we see students actively engaged in rich mathematics activities, working collaboratively, it provides opportunities for teachers to effectively monitor student learning (notice students’ thinking, provide opportunities for rich questioning, and lead to important feedback and next steps…) and prepare the teacher for the lesson close.  Classrooms that engage in these types of cooperative learning opportunities see students actively engaged in their learning.  And more specifically, we see students who show Agency, Ownership and Identity in their mathematics learning (See TruMath‘s description on page 10).


On the other hand, some classrooms might be pushing for a different vision of what groups can look like in a mathematics classroom.  One where a teachers’ role is to continually diagnose students’ weaknesses, then place students into ability groups based on their deficits, then provide specific learning for each of these groups.  To be honest, I understand the concept of small groups that are formed for this purpose, but I think that many teachers might be rushing for these interventions too quickly.

First, let’s understand that small group interventions have come from the RTI (Response to Intervention) model.  Below is a graphic created by Karen Karp shared in Van de Walle’s Teaching Student Centered Mathematics to help explain RTI:

rti2
Response to Intervention – Teaching Student Centered Mathematics

As you can see, given a high quality mathematics program, 80-90% of students can learn successfully given the same learning experiences as everyone.  However, 5-10% of students (which likely are not always the same students) might struggle with a given topic and might need additional small-group interventions.  And an additional 1-5% might need might need even more specialized interventions at the individual level.

The RTI model assumes that we, as a group, have had several different learning experiences over several days before Tier 2 (or Tier 3) approaches are used.  This sounds much healthier than a model of instruction where students are tested on day one, and placed into fix-up groups based on their deficits, or a classroom where students are placed into homogeneous groupings that persist for extended periods of time.


Principles to Action (NCTM) suggests that what I’m talking about here is actually an equity issue!

P2A
Principles to Action

We know that students who are placed into ability groups for extended periods of time come to have their mathematical identity fixed because of how they were placed.  That is, in an attempt to help our students learn, we might be damaging their self perceptions, and therefore, their long-term educational outcomes.


Tier 1 Instruction

intervention

While I completely agree that we need to be giving attention to students who might be struggling with mathematics, I believe the first thing we need to consider is what Tier 1 instruction looks like that is aimed at making learning accessible to everyone.  Tier 1 instruction can’t simply be direct instruction lessons and whole group learning.  To make learning mathematics more accessible to a wider range of students, we need to include more low-floor/high-ceiling tasks, continue to help our students spatalize the concepts they are learning, as well as have a better understanding of developmental progressions so we are able to effectively monitor student learning so we can both know the experiences our students will need to be successful and how we should be responding to their thinking.  Let’s not underestimate how many of our students suffer from an “experience gap”, not an “achievement gap”!

If you are interested in learning more about what Tier 1 instruction can look like as a way to support a wider range of students, please take a look at one of the following:


Tier 2 Instruction

Tier 2 instruction is important.  It allows us to give additional opportunities for students to learn the things they have been learning over the past few days/weeks in a small group.  Learning in a small group with students who are currently struggling with the content they are learning can give us opportunities to better know our students’ thinking.  However, I believe some might be jumping past Tier 1 instruction (in part or completely) in an attempt to make sure that we are intervening. To be honest, this doesn’t make instructional sense to me! If we care about our content, and care about our students’ relationship with mathematics, this might be the wrong first move.

So, let’s make sure that Tier 2 instruction is:

  • Provided after several learning experiences for our students
  • Flexibly created, and easily changed based on the content being learned at the time
  • Focused on student strengths and areas of need, not just weaknesses
  • Aimed at honoring students’ agency, ownership and identity as mathematicians
  • Temporary!

If you are interested in learning more about what Tier 2 interventions can look like take a look at one of the following:


Instead of seeing mathematics as being learned every day as an approach to intervene, let’s continue to learn more about what Tier 1 instruction can look like!  Or maybe you need to hear it from John Hattie:

Or from Jo Boaler:


Final Thoughts

If you are currently in a school that uses small group instruction in mathematics, I would suggest that you reflect on a few things:

  • How do your students see themselves as mathematicians?  How might the topics of Agency, Authority and Identity relate to small group instruction?
  • What fixed mindset messaging do teachers in your building share “high kids”, “level 2 students”, “she’s one of my low students”….?  What fixed mindset messages might your students be hearing?
  • When in a learning cycle do you employ small groups?  Every day?  After several days of learning a concept?
  • How flexible are your groups?  Are they based on a wholistic leveling of your students, or based specifically on the concept they are learning this week?
  • How much time do these small groups receive?  Is it beyond regular instructional timelines, or do these groups form your Tier 1 instructional time?
  • If Karp/Van de Walle suggests that 80-90% of students can be successful in Tier 1, how does this match what you are seeing?  Is there a need to learn more about how Tier 1 approaches can meet the needs of this many students?
  • What are the rest of your students doing when you are working with a small group?  Is it as mathematically rich as the few you’re working with in front of you?
  • Do you believe that all of your students are capable to learn mathematics and to think mathematically?

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Advertisement

Making Math Visual

A few days ago I had the privilege of presenting at MAC2 to a group of teachers in Orillia on the topic of “Making Math Visual”.   If interested, here are some of my talking points for you to reflect on:a1

To get us started I shared an image created by Christopher Danielson and asked the group what they noticed:

a2

We noticed quite a lot in the image… and did a “how many” activity sharing various numbers we saw in the image.  After our discussions I explained that I had shared the same picture with a group of parents at a school’s parent night followed by the next picture.

a3

I asked the group of teachers what mathematics they noticed here… then how they believed parents might have answered the question.  While we, as math teachers, saw patterns in the placements of utensils, shapes and angles around the room, quantities of countable items, multiplicative relationships between utensils and place settings, volume of wine glasses, differences in heights of chairs, perimeter around the table…..  the group correctly guessed that many parents do not typically notice the mathematics around them.

So, my suggestion for the teachers in the room was to help change this:

a5

I then asked the group to do a simple task for us to learn from:

a6

After a few minutes of thinking, I shared some research of the different ways we use fractions:

When we looked at the ways we typically use fractions, it’s easy to notice that WE, as teachers, might need to consider how a focus on representations might help us notice if we are providing our students with a robust (let’s call this a “relational“) view of the concepts our students are learning about.

a13

Data taken from 1 school’s teachers:

a14

We continued to talk about Liping Ma’s work where she asked teachers to answer and represent the following problem:

a15

Followed by a quick story of when a student told me that the following statement is true (click here for the full story).

a17

So, why should we focus on making math visual?

a18


We then explored a statement that Jo Boaler shared in her Norms document:

a19

…and I asked the group to consider if there is something we learn in elementary school that can’t be represented visually?

If you have an idea to the previous question, I’d love to hear it, because none of us could think of a concept that can’t be represented visually.


I then shared a quick problem that grade 7 students in one of my schools had done (see here for the description):

a20

Along with a few different responses that students had completed:

a21

Most of the students in the class had responded much like the image above.  Most students in the class had confused linear metric relationships (1 meter = 100 cm) with metric units of area (1 meter squared is NOT the same as 100cm2).

a22

In fact, only two students had figured out the correct answer… which makes sense, since the students in the class didn’t learn about converting units of area through visuals.

a23

We wrapped up with a few suggestions:

a25

a26

And finally some advice about what we DON’T mean when talking about making mathematics visual:

a27

a28

You might recognize the image above from Graham Fletcher’s post/video where he removed all of the fractional numbers off each face in an attempt to make sure that the tools were used to help students learn mathematics, instead of just using them to get answers.

a29


I want to leave you with a few reflective questions:

  • Can all mathematics concepts in elementary school be represented visually?
  • Why might a visual representation be helpful?
  • Are some representations more helpful than others?
  • How important is it that our students notice the mathematics around them?
  • How might a focus on visual representations help both us and our students deepen our understanding of the mathematics we are teaching/learning?

I’d love to continue the conversation.  Feel free to write a response, or send me a message on Twitter ( @markchubb3 ).


If you are interested in all of the slides, you can take a look here