Reasoning & Proving

This week I had the pleasure to see Dan Meyer, Cathy Fosnot and Graham Fletcher at OAME’s Leadership conference.

leadership oame

Each of the sessions were inspiring and informative… but halfway through the conference I noticed a common message that the first 2 keynote speakers were suggesting:

Capture

Dan Meyer showed us several examples of what mathematical surprise looks like in mathematics class (so students will be interested in making sense of what they are learning, and to get our students really thinking), while Cathy Fosnot shared with us how important it is for students to be puzzled in the process of developing as young mathematicians.  Both messages revolved around what I would consider the most important Process Expectation in the Ontario curriculum – Reasoning and Proving.


Reasoning and Proving

While some see Reasoning and Proving as being about how well an answer is constructed for a given problem – how well communicated/justified a solution is – this is not at all how I see it.  Reasoning is about sense-making… it’s about generalizing why things work… it’s about knowing if something will always, sometimes or never be true…it is about the “that’s why it works” kinds of experiences we want our students engaged in.  Reasoning is really what mathematics is all about.  It’s the pursuit of trying to help our students think mathematically (hence the name of my blog site).


A Non-Example of Reasoning and Proving

In the Ontario curriculum, students in grade 7 are expected to be able to:

  • identify, through investigation, the minimum side and angle information (i.e.,side-side-side; side-angle-side; angle-side-angle) needed to describe a unique triangle

Many textbooks take an expectation like this and remove the need for reasoning.  Take a look:

triangle congruency

As you can see, the textbook here shares that there are 3 “conditions for congruence”.  It shares the objective at the top of the page.  Really there is nothing left to figure out, just a few questions to complete.  You might also notice, that the phrase “explain your reasoning” is used here… but isn’t used in the sense-making way suggested earlier… it is used as a synonym for “show your work”.  This isn’t reasoning!  And there is no “identifying through investigation” here at all – as the verbs in our expectation indicate!


A Example of Reasoning and Proving

Instead of starting with a description of which sets of information are possible minimal information for triangle congruence, we started with this prompt:

Triangles 2

Given a few minutes, each student created their own triangles, measured the side lengths and angles, then thought of which 3 pieces of information (out of the 6 measurements they measured) they would share.  We noticed that each successful student either shared 2 angles, with a side length in between the angles (ASA), or 2 side lengths with the angle in between the sides (SAS).  We could have let the lesson end there, but we decided to ask if any of the other possible sets of 3 pieces of information could work:

triangles 3

While most textbooks share that there are 3 possible sets of minimal information, 2 of which our students easily figured out, we wondered if any of the other sets listed above will be enough information to create a unique triangle.  Asking the original question didn’t offer puzzlement or surprise because everyone answered the problem without much struggle.  As math teachers we might be sure about ASA, SAS and SSS, but I want you to try the other possible pieces of information yourself:

Create triangle ABC where AB=8cm, BC=6cm, ∠BCA=60°

Create triangle FGH where ∠FGH=45°, ∠GHF=100°, HF=12cm

Create triangle JKL where ∠JKL=30°, ∠KLJ=70°, ∠LJK=80°

If you were given the information above, could you guarantee that everyone would create the exact same triangles?  What if I suggested that if you were to provide ANY 4 pieces of information, you would definitely be able to create a unique triangle… would that be true?  Is it possible to supply only 2 pieces of information and have someone create a unique triangle?  You might be surprised here… but that requires you to do the math yourself:)


Final Thoughts

Graham Fletcher in his closing remarks asked us a few important questions:

Graham Fletcher
  • Are you the kind or teacher who teaches the content, then offers problems (like the textbook page in the beginning)?  Or are you the kind of teacher who uses a problem to help your students learn?
  • How are you using surprise or puzzlement in your classroom?  Where do you look for ideas?
  • If you find yourself covering information, instead of helping your students learn to think mathematically, you might want to take a look at resources that aim to help you teach THROUGH problem solving (I got the problem used here in Marian Small’s new Open Questions resource).  Where else might you look?
  • What does Day 1 look like when learning a new concept?
  • Do you see Reasoning and Proving as a way to have students to show their work (like the textbook might suggest) or do you see Reasoning and Proving as a process of sense-making (as Marian Small shares)?
  • Do your students experience moments of cognitive disequilibrium… followed by time for them to struggle independently or with a partner?  Are they regularly engaged in sense-making opportunities, sharing their thinking, debating…?
  • The example I shared here isn’t the most flashy example of surprise, but I used it purposefully because I wanted to illustrate that any topic can be turned into an opportunity for students to do the thinking.  I would love to discuss a topic that you feel students can’t reason through… Let’s think together about if it’s possible to create an experience where students can experience mathematical surprise… or puzzlement… or be engaged in sense-making…  Let’s think together about how we can make Reasoning and Proving a focus for you and your students!

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Reasoning and Proving

This week I had the pleasure to see Dan Meyer, Cathy Fosnot and Graham Fletcher at OAME’s Leadership conference.

leadership oame

Each of the sessions were inspiring and informative… but halfway through the conference I noticed a common message that the first 2 keynote speakers were suggesting:

Capture

Dan Meyer showed us several examples of what mathematical surprise looks like in mathematics class (so students will be interested in making sense of what they are learning), while Cathy Fosnot shared with us how important it is for students to be puzzled in the process of developing as young mathematicians.  Both messages revolved around what I would consider the most important Process Expectation in the Ontario curriculum – Reasoning and Proving.


Reasoning and Proving

While some see Reasoning and Proving as being about how well an answer is constructed for a given problem – how well communicated/justified a solution is – this is not at all how I see it.  Reasoning is about sense-making… it’s about generalizing why things work… it’s about knowing if something will always, sometimes or never be true…it is about the “that’s why it works” kinds of experiences we want our students engaged in.  Reasoning is really what mathematics is all about.  It’s the pursuit of trying to help our students think mathematically (hence the name of my blog site).


A Non-Example of Reasoning and Proving

In the Ontario curriculum, students in grade 7 are expected to be able to:

  • identify, through investigation, the minimum side and angle information (i.e.,side-side-side; side-angle-side; angle-side-angle) needed to describe a unique triangle

Many textbooks take an expectation like this and remove the need for reasoning.  Take a look:

triangle congruency

As you can see, the textbook here shares that there are 3 “conditions for congruence”.  It shares the objective at the top of the page.  Really there is nothing left to figure out, just a few questions to complete.  You might also notice, that the phrase “explain your reasoning” is used here… but isn’t used in the sense-making way suggested earlier… it is used as a synonym for “show your work”.  This isn’t reasoning!  And there is no “identifying through investigation” here at all – as the verbs in our expectation indicate!


A Example of Reasoning and Proving

Instead of starting with a description of which sets of information are possible minimal information for triangle congruence, we started with this prompt:

Triangles 2

Given a few minutes, each student created their own triangles, measured the side lengths and angles, then thought of which 3 pieces of information (out of the 6 measurements they measured) they would share.  We noticed that each successful student either shared 2 angles, with a side length in between the angles (ASA), or 2 side lengths with the angle in between the sides (SAS).  We could have let the lesson end there, but we decided to ask if any of the other possible sets of 3 pieces of information could work:

triangles 3

While most textbooks share that there are 3 possible sets of minimal information, 2 of which our students easily figured out, we wondered if any of the other sets listed above will be enough information to create a unique triangle.  Asking the original question didn’t offer puzzlement or surprise because everyone answered the problem without much struggle.  As math teachers we might be sure about ASA, SAS and SSS, but I want you to try the other possible pieces of information yourself:

Create triangle ABC where AB=8cm, BC=6cm, ∠BCA=60°

Create triangle FGH where ∠FGH=45°, ∠GHF=100°, HF=12cm

Create triangle JKL where ∠JKL=30°, ∠KLJ=70°, ∠LJK=80°

If you were given the information above, could you guarantee that everyone would create the exact same triangles?  What if I suggested that if you were to provide ANY 4 pieces of information, you would definitely be able to create a unique triangle… would that be true?  Is it possible to supply only 2 pieces of information and have someone create a unique triangle?  You might be surprised here… but that requires you to do the math yourself:)


Final Thoughts

Graham Fletcher in his closing remarks asked us a few important questions:

Graham Fletcher

  • Are you the kind or teacher who teaches the content, then offers problems (like the textbook page in the beginning)?  Or are you the kind of teacher who uses a problem to help your students learn?
  • How are you using surprise or puzzlement in your classroom?  Where do you look for ideas?
  • If you find yourself covering information, instead of helping your students learn to think mathematically, you might want to take a look at resources that aim to help you teach THROUGH problem solving (I got the problem used here in Marian Small’s new Open Questions resource).  Where else might you look?
  • What does Day 1 look like when learning a new concept?
  • Do you see Reasoning and Proving as a way to have students to show their work (like the textbook might suggest) or do you see Reasoning and Proving as a process of sense-making (as Marian Small shares)?
  • Do your students experience moments of cognitive disequilibrium… followed by time for them to struggle independently or with a partner?  Are they regularly engaged in sense-making opportunities, sharing their thinking, debating…?
  • The example I shared here isn’t the most flashy example of surprise, but I used it purposefully because I wanted to illustrate that any topic can be turned into an opportunity for students to do the thinking.  I would love to discuss a topic that you feel students can’t reason through… Let’s think together about if it’s possible to create an experience where students can experience mathematical surprise… or puzzlement… or be engaged in sense-making…  Let’s think together about how we can make Reasoning and Proving a focus for you and your students!

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Noticing and Wondering: A powerful tool for assessment

Last week I had the privilege of presenting with Nehlan Binfield at OAME on the topic of assessment in mathematics.  We aimed to position assessment as both a crucial aspect of teaching, yet simplify what it means for us to assess effectively and how we might use our assessments to help our students and class learn.  If interested, here is an abreviated version of our presentation:

b2

We started off by running through a Notice and Wonder with the group.  Given the image above, we noticed colours, sizes, patterns, symmetries (line symmetry and rotational symmetry), some pieces that looked like “trees” and other pieces that looked like “trees without stumps”…

Followed by us wondering about how many this image would be worth if a white was equal to 1, and what the next term in a pattern would look like if this was part of a growing pattern…

b3

We didn’t have time, but if you are interested you can see the whole exchange of how the images were originally created in Daniel Finkel’s quick video.

We then continued down the path of noticing and wondering about the image above.  After several minutes, we had come together to really understand the strategy called Notice and Wonder:

b4

As well as taking a quick look at how we can record our students’ thinking:

b5
Shared by Jamie Duncan


At this point in our session, we changed our focus from Noticing and Wondering about images of mathematics, to noticing and wondering about our students’ thinking.  To do this, we viewed the following video (click here to view) of a student attempting to find the answer of what eight, nine-cent stamps would be worth:

b6

The group noticed the student in the video counting, pausing before each new decade, using two hands to “track” her thinking…  The group noticed that she used most of a 10-frame to think about counting by ones into groups of 9.

We then asked the group to consider the wonders about this student or her thinking and use these wonders to think about what they would say or do next.

  • Would you show her a strategy?
  • Would you ask a question to help you understand their thinking better?
  • Would you suggest a tool?
    Would you give her a different question?

It seemed to us, that the most common next steps might not be the ones that were effectively using our assessment of what this child was actually doing.

b7

Looking through Fosnot’s landscape we noticed that this student was using a “counting by ones” strategy (at least when confronted with 9s), and that skip-counting and repeated addition were the next strategies on her horizon.

While many teachers might want to jump into helping and showing, we invited teachers to first consider whether or not we were paying attention to what she WAS actually doing, as opposed to what she wasn’t doing.


b8

This led nicely into a conversation about the difference between Assessment and Evaluation.  We noticed that we many talk to us about “assessment”, they actually are thinking about “evaluation”.  Yet, if we are to better understand teaching and learning of mathematics, assessment seems like a far better option!

b9

So, if we want to get better at listening interpretively, then we need to be noticing more:

b10

Yet still… it is far too common for schools to use evaluative comments.  The phrases below do not sit right with me… and together we need to find ways to change the current narrative in our schools!!!

b11

b12

Evaluation practices, ranking kids, benchmarking tests… all seem to be aimed at perpetuating the narrative that some kids can’t do math… and distracts us from understanding our students’ current thinking.

So, we aimed our presentation at seeing other possibilities:

b13


To continue the presentation, we shared a few other videos of student in the processs of thinking (click here to view the video).  We paused the video directly after this student said “30ish” and asked the group again to notice and wonder… followed by thinking about what we would say/do next. b15

b16

Followed by another quick video (click here to view).  We watched the video up until she says “so it’s like 14…”.  Again, we noticed and wondered about this students’ thinking… and asked the group what they would say or do next.

b17

After watching the whole video, we discussed the kinds of questions we ask students:

b18

If we are truly aimed at “assessment”, which basically is the process of understanding our students’ thinking, then we need to be aware of the kinds of questions we ask, and our purpose for asking those questions!  (For more about this see link).


We finished our presentation off with a framework that is helpful for us to use when thinking about how our assessment data can move our class forward:

b19

We shared a selection of student work and asked the group to think about what they noticed… what they wonderered… then what they would do next.

For more about how the 5 Practices can be helpful to drive your instruction, see here.


b20

So, let’s remember what is really meant by “assessing” our students…

b21

…and be aware that this might be challenging for us…

b22

…but in the end, if we continue to listen to our students’ thinking, ask questions that will help us understand their thoughts, continue to press our students’ thinking, and bring the learning together in ways where our students are learning WITH and FROM each other, then we will be taking “a giant step toward becoming a master teacher”!


So I’ll leave you with some final thoughts:

  • What do comments sound like in your school(s)?  Are they asset based (examples of what your students ARE doing) or deficit based (“they can’t multiply”… “my low kids don’t get it…”)?
  • What do you do if you are interested in getting better at improving your assessment practices like we’ve discussed here, but your district is asking for data on spreadsheets that are designed to rank kids evaluatively?
  • What do we need to do to change the conversation from “level 2 kids” (evaluative statements that negatively impact our students) to conversations about what our students CAN do and ARE currently doing?
  •  What math knowledge is needed for us to be able to notice mathematicially important milestones in our students?  Can trajectories or landscapes or continua help us know what to notice better?

I’d love to continue the conversation about assessment in mathematics.  Leave a comment here or on Twitter @MarkChubb3 @MrBinfield


If you are interested in reading more on similar topics, might I suggest:

Or take a look at the whole slide show here

 

Strategies vs Models

Earlier this week Pam Harris wrote a thought-provoking article called “Strategies Versus Models: why this is important”. If you haven’t already read it, read it first, then come back to hear some additional thoughts…..


Many teachers around the world have started blogs about teaching, often to fulfill one or both of the following goals:

  • To share ideas/lessons with others that will inspire continued sharing of ideas/lessons; or
  • To share their reflections about how students learn and therefore what kinds of experiences we should be providing our students.

The first of these goals serves us well immediately (planning for tomorrow’s lesson or an idea to save for later) while the second goal helps us grow as reflective and knowledgeable educators (ideas that transcend lessons).  Pam’s post (which I really hope you’ve read by now) is obviously aiming for goal number two here.


Models vs Strategies

In her article, Pam has accurately described a common issue in math education – conflating models (visual representations) with strategies (methods used to figure out an answer).  Below I’ve included a caption of Cathy Fosnot’s landscape of multiplication/division.  The rectangles represent landmark strategies that students use (starting from the bottom you will find early strategies, to the top where you will find more sophisticated strategies).  Whereas the triangles represent models or representations that are used (notice models correspond to strategies nearest to them).

fosnot landscape - strategies vs models

In her post, Pam discusses 3 problems that arise when we do not fully understand the different roles of models and strategies:

  1. Students (and teachers) think that all strategies are equal. 
  2. Students are left thinking that there are an unlimited, vast number of “strategies” to solve a problem.
  3. Students get correct answers and are told to “do it a different way”.

I’d like to discuss how this all fits together…


Liping Ma discussed in her book Knowing and Teaching Elementary Mathematics four pieces that relate to a teacher having a Profound Understanding of Fundamental Mathematics (PUFM).  One of these features she called “Multiple Perspectives“, basically stating that PUFM teachers stress the idea that multiple solutions are possible, yet also stress the advantages and disadvantages of using certain methods in certain situations (hopefully you see the relationship between perspectives and strategies). She claimed that a PUFM teacher’s aim is to use multiple perspectives to help their students gain a flexible understanding of the content.

Many teachers have started down the path of understanding the importance of multiple perspectives.  For example, they provide problems that are open enough so students can answer them in different ways.  However, it is difficult for many teachers to both accept all strategies as valid, while also helping students see that some strategies are more mathematically sophisticated.

models and strategies2


As teachers, we need to continue to learn about how to use our students’ thinking so they can learn WITH and FROM each other.  However, this requires that we continue to better understand developmental trajectories (like Fosnot’s landscape shared above) which will help us avoid the issues Pam had discussed in her original post.


If we want to get better at helping our students know which strategies are more appropriate, then we need to learn more about developmental trajectories.

If we want teachers to know when it is appropriate to say, “can you do it a different way?” and when it is counter-productive, then we need to learn more about developmental trajectories.

If we want to know how to lead an effective lesson close, then we need to learn more about developmental trajectories.

If we want to know which visual representations we should be using in our lessons, then we need to learn more about developmental trajectories.

If we want to think deeper about which contexts are mathematically important, then we need to learn more about developmental trajectories.

If we want to continue to improve as mathematics teachers, then we need to learn more about developmental trajectories!


While I agree that it is essential that we get better at distinguishing between strategies and models, I think the best way to do this is to be immersed into the works of those who can help us learn more about how mathematics develops over time.  May I suggest taking a look at one of the following documents to help us discuss development:


Might I also suggest reading more on similar topics: