What Makes Math Interesting Anyway?

What does it mean to be “creative” in math?
What makes math interesting anyway?

Questions I think we all need to dive into!

Many teachers are comfortable allowing their students to read for pleasure at school and encourage reading at home for pleasure too. Writing is often seen as a creative activity. Our society appreciates Literacy as having both creative and purposeful aspects. Yet mathematics as a source of enjoyment or creativity is often not considered by many. 

I want you to reflect on your own thinking here. How important do you see creativity in mathematics? What does creativity in mathematics even mean to you?

Marian Small might explain the notion of creativity in mathematics best. Take a look:

Marian Small – Creativity and Mathematically Interesting Problems from Professional Learning Supports on Vimeo.

Type 1 and Type 2 Questions

Several years ago, Marian Small tried to help us as math teachers see what it means to think and be creative in mathematics by sharing 2 different ways for our students to experience the same content. She called them “type 1” and “type 2” questions.

Type 1 problems typically ask students to give us the answer.  There might be several different strategies used… There might be many steps or parts to the problem.  Pretty much every Textbook problem would fit under Type 1.  Every standardized test question would fit here.  Many “problem solving” type questions might fit here too.

Type 2 problems are a little tricky to define here. They aren’t necessarily more difficult, they don’t need a context, nor do they need to have more steps.  A Type 2 problem asks students to get to relationships about the concepts involved.  Essentially, Type 2 problems are about asking something where students could have plenty of possible answers (open ended). Again, here is Marian Small describing some examples:

Examples of Type 1 & 2 Questions

Notice that a type 2 problem is more than just open, it encourages you to keep thinking and try other possibilities!  The constraints are part of what makes this a “type 2” problem! The creativity and interest comes from trying to reach your goal!

Where do you look for “Type 2” Problems?

If you haven’t seen it before, the website called OpenMiddle.com is a great source of Type 2 problems.  Each involve students being creative to solve a potential problem AND start to notice mathematical relationships. 

Remember, mathematically interesting problems (Type 2 problems) are interesting because of the mathematical connections, the relationships involved, the deepening of learning that occurs, not just a fancy context.

Questions to Reflect on:

  • When do you include creativity in your math class? All the time? Daily? Toward the beginning of a unit? The end? What does this say about your program? (See A Few Simple Beliefs)
  • If you find it difficult to create these types of questions, where do you look? Marian Small is a great start, but there are many places!
  • How might “Type 2” problems like these offer your students practice for the skills they have been learning? (See purposeful practice)
  • What is the current balance of q]Type 1 and Type 2 problems in your class? Are your students spending more time calculating, or deciding on which calculations are important? What balance would you like?
  • How might problems like these help you meet the varied needs within a mixed ability classroom?
  • If students start to understand how to solve type 2 problems, would you consider asking your students to make up their own problems? (Ideas for making your own problems here).
  • How do these problems help your students build their mathematical intuitions? (See ideas here)
  • Would you want students to work alone, in pairs, in groups? Why?
  • If you have struggled with developing rich discussions in your class, how might these types of problems help you bring a need for discussions? How might this change class conversations afterward?
  • How will you consolidate the learning afterward? (See Never Skip the Closing of the Lesson)
  • As the teacher, what will you be doing when students are being creative? How might listening to student thinking help you learn more about your students? (See: Noticing and Wondering: A powerful tool for assessment)

I’d love to continue the conversation about creativity in mathematics.  Leave a comment here or on Twitter @MarkChubb3


Building our Students’ Mathematical Intuition

I’ve been asked to share my OAME 2017 presentation on Mathematical Intuitions by a few of my participants.  Instead of just sharing the slides, I thought I would add a bit of the conversations we had, and the purposes behind a few of my slides.  Here is a brief explanation of the 75 minutes we shared together:

I started with an image of the OAME 2017 official graphic and asked everyone what mathematics they saw in the photo:


I was impressed that many of us noticed various things from numbers, to sizes of fonts, to shapes and other geometric features, to measurement concepts to patterns…

I decided to start with an image so I could listen to everyone’s ideas (the group could have simply noticed the numbers visible on the page, or the triangles, but thankfully the group noticed a lot more!).

I then shared a few stories where students have entered into a problem where they have attempted to do a bunch of procedures or calculations without ever doing any thinking, either before or after, to make sure they are making sense of things.

intuition3intuition4You can read the full stories on these 2 slides here and here.

The bandana problem above is a really interesting one for me because it shows just how likely our previous learning can actually get in the way of students who are attempting to make sense of things.  Most students who learned about how to convert in previous years in a procedural way have difficulty realizing that 1 meter squared is actually 10,000 cm squared!



In an attempt to explain the kinds of mental actions we actually want our students to use when learning and doing mathematics I showed an image shared by Tracy Zager (from her new book Becoming the Math Teacher You Wish You’d Had).  We discussed just how interrelated Logic and Intuition are.  Students who are using their intuition start by making sense of things.  They start by making choices or estimates, which are often based on their previous experiences, and use logic to continue to refine and think through what makes sense.  This process, while often not even realized by those who are confident with their mathematics, is one I believe we need to foster and bring to the forefront of our discussions.


I then shared the puzzle above with the group and asked them to find the value of the question mark.  Most did exactly what I assumed they would do… but none did what the following student did:


Most teachers aimed to find the value of each image (which isn’t as easy as it looks for many elementary teachers), but the student above didn’t.  They instead realized that all of the shapes if you add them up in any direction would equal 94.  This student had never been given a problem like this, so didn’t have any preconceived notions about how to solve it.  They instead, thought about what makes sense.


So, how DO we help our students use their intuition?  Here are a few ideas I shared:

  1. Contemplate then Calculate routine (See David Wees for more about this here or here, or purchase Routines for Reasoning by Grace, Amy and Susan)

intuition11intuition12The two images above show visual representations (thank you Andrew Gael and Fawn Nguyen for your images) where I asked everyone to attempt to think before they did any calculations.  I used Andrew’s picture of the dominoes and asked “will the two sides balance… don’t do any calculations though”.  For Fawn’s Visual Pattern, I asked the group to explain what the 10th image would LOOK LIKE (before I wanted them to figure out how many of each shape would be there, and then find a rule for the nth term).

We shared a few estimation strategies:


and a few “Notice and Wonder” ideas:




However, while I love each of the strategies discussed here (Contemplate then Calculate, Estimation routines, Notice and Wonder) I’m not sure that doing a routine like these, then going about the actual learning of the day is going to be effective!


Instead, we need to make sure that noticing things, estimating, thinking happen all the time.  These need to be a part of every new piece of learning, not just fun or neat warm-ups!


Building our students’ intuition means that we need to provide opportunities for them them to think and make sense of things, and have plenty of opportunities for them to discuss their thinking!

If our goal is for students to think mathematically, and use their logic and intuition regularly, we need to operate by a few simple beliefs:



I ended the presentation with a final thought:intuition22

Here is a copy of the presentation if you are interested:

Building your Students’ Mathematical Intuitions

I’d suggest you scroll down to slide 49 and play the quick video of one of my students doing a spatial reasoning puzzle.  It’s one of my favourites because it illustrates visually the thinking processes used when a student is using both their intuition and logic.

To me, there seems to be so much more I need to learn about how to help my students who seem to struggle in math class use their intuition.  Hopefully this conversation is just the beginning of us learning more about the topic!

A few questions I want to leave you with:

  • What routines do you have in place that help your students make sense of things, use their intuitions and develop mathematical reasoning?
  • Do your students use their intuition in other situations as well (or just during these routines)?
  • How can you start to build in opportunities for your students to use their intuition as a regular part of how your class is structured?
  • What does it look like when our students who are struggling attempt to use their intuition?  How can we help all of our students develop and use these process regularly?

Special thanks to Tracy Zager’s new book for the inspiration for the presentation.

As always, I would love to continue the conversation here or on Twitter