## “Number Boxes”

A few weeks ago I was introduced to Jenna Laib‘s game “Number Boxes” and was very interested in using it as a dynamic game to help students learn a variety of new content — Jenna’s blog explaining the game can be found here: “One of My Favorite Games: Number Boxes“.

Basically the game involves students rolling dice (or spinning a spinner / drawing a card) to generate a random number and placing that number in one of their empty number boxes one-at-a-time. The game can progress in a variety of ways:

As you can see, the game is quite adaptive to the sizes of numbers and concepts your students are comfortable with. As students roll/spin/draw a number, they have to place it on the board. What makes this tricky is not knowing what future numbers will be. In the board above, you can see that there is also a “Throwaway” box that students can use if they do not like one of the numbers rolled/spun/drawn. This game is an excellent example of a “Dynamic Game” or “Dynamic Practice” as students are following the ideals on the right side of the chart below:

Blow is a gallery of some possible adaptations of this game or linked here is a slideshow

## Metric Conversions

I however, wanted to use Jenna’s game to help students practice a concept they often have difficulty with – Metric Conversions. Once students have had many opportunities to estimate and measure various distances, capacities, and masses, they should be able to start making connections between all of the units. I suggest a good balance between using problems that help students make sense of the relationships between the units, and opportunities to practice conversions on their own. However, instead of randomly generated worksheets or other rote practice, I think Jenna’s game could work perfectly. Take a look at some examples:

## Reflection

It is important to offer tasks that allow students to make choices and decisions like the ones offered in this game. Learning needs to be more than handing out assignments, and collecting work… Learning takes time! Students need more time to explore, see what works, have peers challenge each others’ thinking, make important connections… Hopefully you can see these opportunities in this task.

## Final Thoughts:

• If you play one of these games, or your own version, will you first offer a simplified version so your students get familiar with the game, or will you dive into the content you want to teach?
• Would you prefer your students to play this game as a class or with a group, a partner, or independently?
• How will you build in conversations with students so they discuss which numbers they think should be the highest / lowest numbers? How will you offer time for these strategic discussions?
• Should we adapt these to continually offer more challenge and deeper learning, or offer more opportunities to play the same game board? How will we know when to adapt and change?
• What does “practice” look like in your classroom?  Does it involve thinking or decisions?  Would it be more engaging for your students to make practice involve more thinking?
• How does this game relate to the topic of “engagement”?  Is engagement about making tasks more fun or about making tasks require more thought?  Which view of engagement do you and your students subscribe to?
• How have your students experienced measurement concepts like these? Are they learning procedural rules or are they thinking about the actual sizes of numbers / sizes of the units involved?
• As the teacher, what will you be doing when students are playing? How might listening to student thinking help you learn more about your students? (See: Noticing and Wondering: A powerful tool for assessment)

## Math Games – building a foundation for mathematical reasoning

In 2001, the National Research Council, in their report Adding it up: Helping children learn mathematics, sought to address a concern expressed by many Americans: that too few students in our schools are successfully acquiring the mathematical knowledge, skill, and confidence they need to use the mathematics they have learned.

Developing Mathematical Proficiency
The potential of different types of tasks for student learning, 2017

As we start a new school year, I expect many teachers, schools and districts to begin conversations surrounding assessment and wondering how to start learning given students who might be “behind”. I’ve shared my thoughts about how we should NOT start a school year, but I wanted to offer some alternatives in this post surrounding a piece often overlooked — our students’ confidence (including student agency, ownership and identity). If we are truly interested in starting a year off successfully, then we need to spend time allowing our students to see themselves in the math they are doing… and to see their strengths, not their deficits.

[The] goal is to support all students — especially those who have not been academically successful in the past — to develop a sense of agency and ownership over their own learning. We want students to come to see themselves as intellectually capable and competent — not by giving them easy successes, but by engaging them as sense-makers, problem solvers, and creators of meaningful and important ideas.

MathShell – TRUMath, 2016

When we hear ideals like the above quote, what many of us see is as missing are specific examples. How DO we help our students gain confidence becomes a question most of us are left with. Adding It Up suggests that mathematical proficiency includes an intertwined mix of procedural fluency, conceptual understanding, strategic competence, adaptive reasoning and productive disposition. Which again sounds nice in theory, but in reality, these 5 pieces are not balanced in classroom materials nor in our assessment data. Not even close!

So, again we are left with a specific need for us to build confidence in our students. There is a growing body of evidence to support the use of strategy games in math class as a purposeful way to build confidence (including student agency, authority and identity).

To be helpful, I’d like to share some examples of possible strategy games that are appropriate for all ages. Each game is a traditional game from various places around the world.

*The above files are open to view / print. If you experience difficulties accessing, you might need to use a non-educational account as your school board might be restricting your access.

#### How to Play:

Each link above includes a full set of rules, but you might also be interested in watching a preview of these games (thanks to WhatDoWeDoAllDay.com)

### A few things to reflect on:

• Some students have missed a lot of school / learning. Our students might be entering a new grade worried about the difficulty level of the content. Beyond content, what other aspects of learning math might be a struggle for our students? How might introducing games periodically help with these struggles?
• How do you see equity playing a role in all of this? Pinpointing and focusing on student gaps often leads to inequities in experiences and outcomes. So, how can the ideas above help reduce these inequities?
• One of the best ways to tackle equity issues is to expand WHAT we consider mathematics and expand WHO is considered a math person. How might you see using games periodically as a way for us to improve in these two areas?
• If you are distance learning, how might games be an integral part of your program? How do you see including games that are not related to content helpful for our students that might struggle to learn mathematics? (building confidence, social-emotional learning skills, community, students’ identities…)
• If you are learning in person this year, but can not have students working together, how might you adapt some of these strategy games?
• What might you notice as students are playing games that you might not be able to notice otherwise?
• How might we see a link between gaining confidence through playing strategy games and improvement in mathematical reasoning?
• Why do you think I choose the games above (I searched through many)? Hopefully you can see a benefit from seeing mathematics learning from various cultures.

If interested in more games and puzzles? Take a look at some of the following posts: