Rushing for Interventions

I see students working in groups all the time…  Students working collaboratively in pairs or small groups having rich discussions as they sort shapes by specific properties, students identifying and extending their partner’s visual patterns, students playing games aimed at improving their procedural fluency, students cooperating to make sense of a low-floor/high-ceiling problem…..

When we see students actively engaged in rich mathematics activities, working collaboratively, it provides opportunities for teachers to effectively monitor student learning (notice students’ thinking, provide opportunities for rich questioning, and lead to important feedback and next steps…) and prepare the teacher for the lesson close.  Classrooms that engage in these types of cooperative learning opportunities see students actively engaged in their learning.  And more specifically, we see students who show Agency, Ownership and Identity in their mathematics learning (See TruMath‘s description on page 10).


On the other hand, some classrooms might be pushing for a different vision of what groups can look like in a mathematics classroom.  One where a teachers’ role is to continually diagnose students’ weaknesses, then place students into ability groups based on their deficits, then provide specific learning for each of these groups.  To be honest, I understand the concept of small groups that are formed for this purpose, but I think that many teachers might be rushing for these interventions too quickly.

First, let’s understand that small group interventions have come from the RTI (Response to Intervention) model.  Below is a graphic created by Karen Karp shared in Van de Walle’s Teaching Student Centered Mathematics to help explain RTI:

rti2
Response to Intervention – Teaching Student Centered Mathematics

As you can see, given a high quality mathematics program, 80-90% of students can learn successfully given the same learning experiences as everyone.  However, 5-10% of students (which likely are not always the same students) might struggle with a given topic and might need additional small-group interventions.  And an additional 1-5% might need might need even more specialized interventions at the individual level.

The RTI model assumes that we, as a group, have had several different learning experiences over several days before Tier 2 (or Tier 3) approaches are used.  This sounds much healthier than a model of instruction where students are tested on day one, and placed into fix-up groups based on their deficits, or a classroom where students are placed into homogeneous groupings that persist for extended periods of time.


Principles to Action (NCTM) suggests that what I’m talking about here is actually an equity issue!

P2A
Principles to Action

We know that students who are placed into ability groups for extended periods of time come to have their mathematical identity fixed because of how they were placed.  That is, in an attempt to help our students learn, we might be damaging their self perceptions, and therefore, their long-term educational outcomes.


Tier 1 Instruction

intervention

While I completely agree that we need to be giving attention to students who might be struggling with mathematics, I believe the first thing we need to consider is what Tier 1 instruction looks like that is aimed at making learning accessible to everyone.  Tier 1 instruction can’t simply be direct instruction lessons and whole group learning.  To make learning mathematics more accessible to a wider range of students, we need to include more low-floor/high-ceiling tasks, continue to help our students spatalize the concepts they are learning, as well as have a better understanding of developmental progressions so we are able to effectively monitor student learning so we can both know the experiences our students will need to be successful and how we should be responding to their thinking.  Let’s not underestimate how many of our students suffer from an “experience gap”, not an “achievement gap”!

If you are interested in learning more about what Tier 1 instruction can look like as a way to support a wider range of students, please take a look at one of the following:


Tier 2 Instruction

Tier 2 instruction is important.  It allows us to give additional opportunities for students to learn the things they have been learning over the past few days/weeks in a small group.  Learning in a small group with students who are currently struggling with the content they are learning can give us opportunities to better know our students’ thinking.  However, I believe some might be jumping past Tier 1 instruction (in part or completely) in an attempt to make sure that we are intervening. To be honest, this doesn’t make instructional sense to me! If we care about our content, and care about our students’ relationship with mathematics, this might be the wrong first move.

So, let’s make sure that Tier 2 instruction is:

  • Provided after several learning experiences for our students
  • Flexibly created, and easily changed based on the content being learned at the time
  • Focused on student strengths and areas of need, not just weaknesses
  • Aimed at honoring students’ agency, ownership and identity as mathematicians
  • Temporary!

If you are interested in learning more about what Tier 2 interventions can look like take a look at one of the following:


Instead of seeing mathematics as being learned every day as an approach to intervene, let’s continue to learn more about what Tier 1 instruction can look like!  Or maybe you need to hear it from John Hattie:

Or from Jo Boaler:


Final Thoughts

If you are currently in a school that uses small group instruction in mathematics, I would suggest that you reflect on a few things:

  • How do your students see themselves as mathematicians?  How might the topics of Agency, Authority and Identity relate to small group instruction?
  • What fixed mindset messaging do teachers in your building share “high kids”, “level 2 students”, “she’s one of my low students”….?  What fixed mindset messages might your students be hearing?
  • When in a learning cycle do you employ small groups?  Every day?  After several days of learning a concept?
  • How flexible are your groups?  Are they based on a wholistic leveling of your students, or based specifically on the concept they are learning this week?
  • How much time do these small groups receive?  Is it beyond regular instructional timelines, or do these groups form your Tier 1 instructional time?
  • If Karp/Van de Walle suggests that 80-90% of students can be successful in Tier 1, how does this match what you are seeing?  Is there a need to learn more about how Tier 1 approaches can meet the needs of this many students?
  • What are the rest of your students doing when you are working with a small group?  Is it as mathematically rich as the few you’re working with in front of you?
  • Do you believe that all of your students are capable to learn mathematics and to think mathematically?

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Advertisements

Noticing and Wondering: A powerful tool for assessment

Last week I had the privilege of presenting with Nehlan Binfield at OAME on the topic of assessment in mathematics.  We aimed to position assessment as both a crucial aspect of teaching, yet simplify what it means for us to assess effectively and how we might use our assessments to help our students and class learn.  If interested, here is an abreviated version of our presentation:

b2

We started off by running through a Notice and Wonder with the group.  Given the image above, we noticed colours, sizes, patterns, symmetries (line symmetry and rotational symmetry), some pieces that looked like “trees” and other pieces that looked like “trees without stumps”…

Followed by us wondering about how many this image would be worth if a white was equal to 1, and what the next term in a pattern would look like if this was part of a growing pattern…

b3

We didn’t have time, but if you are interested you can see the whole exchange of how the images were originally created in Daniel Finkel’s quick video.

We then continued down the path of noticing and wondering about the image above.  After several minutes, we had come together to really understand the strategy called Notice and Wonder:

b4

As well as taking a quick look at how we can record our students’ thinking:

b5
Shared by Jamie Duncan

At this point in our session, we changed our focus from Noticing and Wondering about images of mathematics, to noticing and wondering about our students’ thinking.  To do this, we viewed the following video (click here to view) of a student attempting to find the answer of what eight, nine-cent stamps would be worth:

b6

The group noticed the student in the video counting, pausing before each new decade, using two hands to “track” her thinking…  The group noticed that she used most of a 10-frame to think about counting by ones into groups of 9.

We then asked the group to consider the wonders about this student or her thinking and use these wonders to think about what they would say or do next.

  • Would you show her a strategy?
  • Would you ask a question to help you understand their thinking better?
  • Would you suggest a tool?
    Would you give her a different question?

It seemed to us, that the most common next steps might not be the ones that were effectively using our assessment of what this child was actually doing.

b7

Looking through Fosnot’s landscape we noticed that this student was using a “counting by ones” strategy (at least when confronted with 9s), and that skip-counting and repeated addition were the next strategies on her horizon.

While many teachers might want to jump into helping and showing, we invited teachers to first consider whether or not we were paying attention to what she WAS actually doing, as opposed to what she wasn’t doing.


b8

This led nicely into a conversation about the difference between Assessment and Evaluation.  We noticed that we many talk to us about “assessment”, they actually are thinking about “evaluation”.  Yet, if we are to better understand teaching and learning of mathematics, assessment seems like a far better option!

b9

So, if we want to get better at listening interpretively, then we need to be noticing more:

b10

Yet still… it is far too common for schools to use evaluative comments.  The phrases below do not sit right with me… and together we need to find ways to change the current narrative in our schools!!!

b11

b12

Evaluation practices, ranking kids, benchmarking tests… all seem to be aimed at perpetuating the narrative that some kids can’t do math… and distracts us from understanding our students’ current thinking.

So, we aimed our presentation at seeing other possibilities:

b13


To continue the presentation, we shared a few other videos of student in the processs of thinking (click here to view the video).  We paused the video directly after this student said “30ish” and asked the group again to notice and wonder… followed by thinking about what we would say/do next. b15

b16

Followed by another quick video (click here to view).  We watched the video up until she says “so it’s like 14…”.  Again, we noticed and wondered about this students’ thinking… and asked the group what they would say or do next.

b17

After watching the whole video, we discussed the kinds of questions we ask students:

b18

If we are truly aimed at “assessment”, which basically is the process of understanding our students’ thinking, then we need to be aware of the kinds of questions we ask, and our purpose for asking those questions!  (For more about this see link).


We finished our presentation off with a framework that is helpful for us to use when thinking about how our assessment data can move our class forward:

b19

We shared a selection of student work and asked the group to think about what they noticed… what they wonderered… then what they would do next.

For more about how the 5 Practices can be helpful to drive your instruction, see here.


b20

So, let’s remember what is really meant by “assessing” our students…

b21

…and be aware that this might be challenging for us…

b22

…but in the end, if we continue to listen to our students’ thinking, ask questions that will help us understand their thoughts, continue to press our students’ thinking, and bring the learning together in ways where our students are learning WITH and FROM each other, then we will be taking “a giant step toward becoming a master teacher”!


So I’ll leave you with some final thoughts:

  • What do comments sound like in your school(s)?  Are they asset based (examples of what your students ARE doing) or deficit based (“they can’t multiply”… “my low kids don’t get it…”)?
  • What do you do if you are interested in getting better at improving your assessment practices like we’ve discussed here, but your district is asking for data on spreadsheets that are designed to rank kids evaluatively?
  • What do we need to do to change the conversation from “level 2 kids” (evaluative statements that negatively impact our students) to conversations about what our students CAN do and ARE currently doing?
  •  What math knowledge is needed for us to be able to notice mathematicially important milestones in our students?  Can trajectories or landscapes or continua help us know what to notice better?

I’d love to continue the conversation about assessment in mathematics.  Leave a comment here or on Twitter @MarkChubb3 @MrBinfield


If you are interested in reading more on similar topics, might I suggest:

Or take a look at the whole slide show here