The role of “practice” in mathematics class

A few weeks ago a NYTimes published an article titled, Make Your Daughter Practice Math. She’ll Thank You Later, an opinion piece that, basically, asserts that girls would benefit from “extra required practice”.  I took a few minutes to look through the comments (which there are over 600) and noticed a polarizing set of personal comments related to what has worked or hasn’t worked for each person, or their own children.  Some sharing how practicing was an essential component for making them/their kids successful at mathematics, and others discussing stories related to frustration, humiliation and the need for children to enjoy and be interested in the subject.

Instead of picking apart the article and sharing the various issues I have with it (like the notion of “extra practice” should be given based on gender), or simply stating my own opinions, I think it would be far more productive to consider why practice might be important and specifically consider some key elements of what might make practice beneficial to more students.


To many, the term “practice” brings about childhood memories of completing pages of repeated random questions, or drills sheets where the same algorithm is used over and over again.  Students who successfully completed the first few questions typically had no issues completing each and every question.  For those who were successful, the belief is that the repetition helped.  For those who were less successful, the belief is that repeating an algorithm that didn’t make sense in the first place wasn’t helpful…  even if they can get an answer, they might still not understand (*Defining 2 opposing definitions of “understanding” here).

“Practice” for both of the views above is often thought of as rote tasks that are devoid of thinking, choices or sense making.  Before I share with you an alternative view of practice, I’d like to first consider how we have tackled “practice” for students who are developing as readers.

If we were to consider reading instruction for a moment, everyone would agree that it would be important to practice reading, however, most of us wouldn’t have thoughts of reading pages of random words on a page, we would likely think about picture books.  Books offer many important factors for young readers.  Pictures might help give clues to difficult words, the storyline offers interest and motivation to continue, and the messages within the book might bring about rich discussions related to the purpose of the book.  This kind of practice is both encourages students to continue reading, and helps them continue to get better at the same time.  However, this is very different from what we view as math “practice”.

In Dan Finkel’s Ted Talk (Five Principles of Extraordinary Math Teaching) he has attempted to help teachers and parents see the equivalent kind of practice for mathematics:

Finkel Quote


Below is a chart explaining the role of practice as it relates to what Dan Finkel calls play:

practice2

Take a look at the “Process” row for a moment.  Here you can see the difference between a repetitive drill kind of practice and the “playful experiences” kind of  practice Dan had called for.  Let’s take a quick example of how practice can be playful.


Students learning to add 2-digit numbers were asked to “practice” their understanding of addition by playing a game called “How Close to 100?”.  The rules:

  • Roll 2 dice to create a 2-digit number (your choice of 41 or 14)
  • Use base-10 materials as appropriate
  • Try to get as close to 100 as possible
  • 4th role you are allowed eliminating any 1 number IF you want

close to 100b

What choice would you make???  Some students might want to keep all 4 roles and use the 14 to get close to 100, while other students might take the 41 and try to eliminate one of the roles to see if they can get closer.


When practice involves active thinking and reasoning, our students get the practice they need and the motivation to sustain learning!  When practice allows students to gain a deeper understanding (in this case the visual of the base-10 materials) or make connections between concepts, our students are doing more than passive rule following – they are engaging in thinking mathematically!


In the end, we need to take greater care in making sure that the experiences we provide our students are aimed at the 5 strands shown below:

strands of mathematical proficency.png
Adding It Up: Helping Children Learn Mathematics

You might also be interested in thinking about how we might practice Geometrical terms/properties, or spatial reasoning, or exponents, or Bisectors


So I will leave you with some final thoughts:

  • What does “practice” look like in your classroom?  Does it involve thinking or decisions?  Would it be more engaging for your students to make practice involve more thinking?
  • How does this topic relate to the topic of “engagement”?  Is engagement about making tasks more fun or about making tasks require more thought?  Which view of engagement do you and your students subscribe to?
  • What does practice look like for your students outside of school?  Is there a place for practice at home?
  • Which of the 5 strands (shown above) are regularly present in your “practice” activities?  Are there strands you would like to make sure are embedded more regularly?

I’d love to continue the conversation about “practicing” mathematics.  Leave a comment here or on Twitter @MarkChubb3

 

Advertisements

Noticing and Wondering: A powerful tool for assessment

Last week I had the privilege of presenting with Nehlan Binfield at OAME on the topic of assessment in mathematics.  We aimed to position assessment as both a crucial aspect of teaching, yet simplify what it means for us to assess effectively and how we might use our assessments to help our students and class learn.  If interested, here is an abreviated version of our presentation:

b2

We started off by running through a Notice and Wonder with the group.  Given the image above, we noticed colours, sizes, patterns, symmetries (line symmetry and rotational symmetry), some pieces that looked like “trees” and other pieces that looked like “trees without stumps”…

Followed by us wondering about how many this image would be worth if a white was equal to 1, and what the next term in a pattern would look like if this was part of a growing pattern…

b3

We didn’t have time, but if you are interested you can see the whole exchange of how the images were originally created in Daniel Finkel’s quick video.

We then continued down the path of noticing and wondering about the image above.  After several minutes, we had come together to really understand the strategy called Notice and Wonder:

b4

As well as taking a quick look at how we can record our students’ thinking:

b5
Shared by Jamie Duncan

At this point in our session, we changed our focus from Noticing and Wondering about images of mathematics, to noticing and wondering about our students’ thinking.  To do this, we viewed the following video (click here to view) of a student attempting to find the answer of what eight, nine-cent stamps would be worth:

b6

The group noticed the student in the video counting, pausing before each new decade, using two hands to “track” her thinking…  The group noticed that she used most of a 10-frame to think about counting by ones into groups of 9.

We then asked the group to consider the wonders about this student or her thinking and use these wonders to think about what they would say or do next.

  • Would you show her a strategy?
  • Would you ask a question to help you understand their thinking better?
  • Would you suggest a tool?
    Would you give her a different question?

It seemed to us, that the most common next steps might not be the ones that were effectively using our assessment of what this child was actually doing.

b7

Looking through Fosnot’s landscape we noticed that this student was using a “counting by ones” strategy (at least when confronted with 9s), and that skip-counting and repeated addition were the next strategies on her horizon.

While many teachers might want to jump into helping and showing, we invited teachers to first consider whether or not we were paying attention to what she WAS actually doing, as opposed to what she wasn’t doing.


b8

This led nicely into a conversation about the difference between Assessment and Evaluation.  We noticed that we many talk to us about “assessment”, they actually are thinking about “evaluation”.  Yet, if we are to better understand teaching and learning of mathematics, assessment seems like a far better option!

b9

So, if we want to get better at listening interpretively, then we need to be noticing more:

b10

Yet still… it is far too common for schools to use evaluative comments.  The phrases below do not sit right with me… and together we need to find ways to change the current narrative in our schools!!!

b11

b12

Evaluation practices, ranking kids, benchmarking tests… all seem to be aimed at perpetuating the narrative that some kids can’t do math… and distracts us from understanding our students’ current thinking.

So, we aimed our presentation at seeing other possibilities:

b13


To continue the presentation, we shared a few other videos of student in the processs of thinking (click here to view the video).  We paused the video directly after this student said “30ish” and asked the group again to notice and wonder… followed by thinking about what we would say/do next. b15

b16

Followed by another quick video (click here to view).  We watched the video up until she says “so it’s like 14…”.  Again, we noticed and wondered about this students’ thinking… and asked the group what they would say or do next.

b17

After watching the whole video, we discussed the kinds of questions we ask students:

b18

If we are truly aimed at “assessment”, which basically is the process of understanding our students’ thinking, then we need to be aware of the kinds of questions we ask, and our purpose for asking those questions!  (For more about this see link).


We finished our presentation off with a framework that is helpful for us to use when thinking about how our assessment data can move our class forward:

b19

We shared a selection of student work and asked the group to think about what they noticed… what they wonderered… then what they would do next.

For more about how the 5 Practices can be helpful to drive your instruction, see here.


b20

So, let’s remember what is really meant by “assessing” our students…

b21

…and be aware that this might be challenging for us…

b22

…but in the end, if we continue to listen to our students’ thinking, ask questions that will help us understand their thoughts, continue to press our students’ thinking, and bring the learning together in ways where our students are learning WITH and FROM each other, then we will be taking “a giant step toward becoming a master teacher”!


So I’ll leave you with some final thoughts:

  • What do comments sound like in your school(s)?  Are they asset based (examples of what your students ARE doing) or deficit based (“they can’t multiply”… “my low kids don’t get it…”)?
  • What do you do if you are interested in getting better at improving your assessment practices like we’ve discussed here, but your district is asking for data on spreadsheets that are designed to rank kids evaluatively?
  • What do we need to do to change the conversation from “level 2 kids” (evaluative statements that negatively impact our students) to conversations about what our students CAN do and ARE currently doing?
  •  What math knowledge is needed for us to be able to notice mathematicially important milestones in our students?  Can trajectories or landscapes or continua help us know what to notice better?

I’d love to continue the conversation about assessment in mathematics.  Leave a comment here or on Twitter @MarkChubb3 @MrBinfield


If you are interested in reading more on similar topics, might I suggest:

Or take a look at the whole slide show here