“The More Strategies, the Better?

As many teachers implement number talks/math strings and lessons where students are learning through problem solving, the idea that there are many ways to answer a question or problem becomes more important. However, I think we need to unpack the beliefs and practices surrounding what it means for our students to have different “strategies”. A few common beliefs and practices include:

Really, there are benefits and issues with each of these thoughts…. and the right answer is actually really much more complicated than any of these.  To help us consider where our own decisions lie, let’s start by considering an actual example. If students were given a pattern with the first 4 terms like this:

See VisualPatterns.org for more visual patterns

…and asked how many shapes there would be on the 24th design (how many squares and circles in total).  Students could tackle this in many ways:

  • Draw out the 24th step by building on and keeping track of each step number
  • Build the 24th step by adding on and keeping track of the step number
  • Make a T-table and use skip counting to find each new step (5, 9, 13, 17…).
  • Find the explicit rule from the first few images’ data placed on a T-table (“I see the pattern is 5, 9, 13, 17. each new image uses 4 new shapes, so the pattern is a multiplied by 4 pattern…. and I think the rule should be ‘number of images = step number x4+1’. Let me double check…”).
  • Notice the “constant” and multiplicative aspects of the visual, then find the explicit rule (I see that each image increases by 4 new shapes on the right, so the multiplicative aspect of this pattern is x4, and term 0 might just be 1 circle. So the pattern must be x4+1″).
  • Create a graph, then find the explicit rule based on starting point and growth (“When I graph this, my line hits the y-axis at 1, and increases by 4 each time, so the pattern rule must be x4+1”).

While each of these might offer a correct answer, we as the teacher need to assess (figure out what our students are doing/thinking) and then decide on how to react accordingly.  If a student is using an additive strategy (building each step, or creating a t-table with every line recorded using skip counting), their strategy is a very early model of understanding here and we might want to challenge this/these students to find or use other methods that use multiplicative reasoning.  Saying “do it another way” might be helpful here, but it might not be helpful for other students.  If on the other hand, a student DID use multiplicative reasoning, and we suggest “do it another way”, then they fill out a t-table with every line indicated, we might actually be promoting the use of less sophisticated reasoning.  

On the other hand, if we tell/show students exactly how to find the multiplicative rule, and everyone is doing it well, then I would worry that students would struggle with future learning.  For example, if everyone is told to make a t-table, and find the recursive pattern (above would be a recursive pattern of+4 for total shapes), then use that as the multiplicative basis for the explicit rule x4 to make x4+1), then students are likely just following steps, and are not internalizing what specifically in the visual pattern here is +4 or x4… or where the constant of +1 is.  I would expect these students to really struggle with figuring out patterns like the following that is non-linear:

See VisualPatterns.org for more visual patterns

Students told to start with a t-table and find the explicit pattern rule are likely not even paying attention to what in the visual is growing, how it is growing or what is constant between each figure. So, potentially, moving students too quickly to the most sophisticated models will likely miss out on the development necessary for them to be successful later.

While multiple strategies are helpful to know, it is important for US to know which strategies are early understandings, and which are more sophisticated.  WE need to know which students to push and when to allow everyone to do it THEIR way, then hold a math congress together to discuss relationships between strategies, and which strategies might be more beneficial in which circumstance. It is the relationships between strategies that is the MOST important thing for us to consider!

Focusing on OUR Understanding:

In order for us to know which sequence of learning is best for our students, and be able to respond to our students’ current understandings, we need to be aware of how any particular math concepts develops over time. Let’s be clear, understanding and using a progression like this takes time and experience for US to understand and become comfortable with.

While most educational resources are filled with lessons and assessment opportunities, very few offer ideas for us as teachers about what to look for as students are working, and how to respond to different students based on their current thinking. This is what Deborah Ball calls “Math Knowledge for Teaching”:

If any teacher wants to improve their practice, I believe this is the space that will have the most impact! If schools are interested in improving math instruction, helping teachers know what to look for, and how to respond is likely the best place to tackle. If districts are aiming for ways to improve, helping each teacher learn more about these progressions will likely be what’s going to make the biggest impacts!

Where to Start?

If you want to deepen our understanding of the math we teach, including better understanding how math develops over time, I would suggest:

  • Providing more open questions, and looking at student samples as a team of teachers
  • Using math resources that have been specifically designed with progressions in mind (Cathy Fosnot’s Contexts for Learning and minilessons, Cathy Bruce & Ruth Beatty’s From Patterns to Algebra, Alex Lawson’s What to Look For…), and monitoring student strategies over time
  • Anticipating possible student strategies, and using a continuum or landscape (Cathy Fosnot’s Landscapes, Lawson’s Continua, Clement’s Trajectories, Van Hiele’s levels of geometric thought…) as a guide to help you see how your students are progressing
  • Collaborate with other educators using resources designed for teachers to deepen their understanding and provide examples for us to use with kids (Marian Small’s Understanding the Math we Teach, Van de Walle’s Teaching Student Centered Mathematics, Alex Lawsons’s What to Look For, Doug Clements’ Learning and Teaching Early Math…)
  • Have discussions with other math educators about the math you teach and how students develop over time.

Questions to Reflect on:

  • How do you typically respond to your students when you give them opportunities to share their thinking? Which of the 3 beliefs/practices is most common for you? How might this post help you consider other beliefs/practices?
  • How can you both honour students’ current understandings, yet still help students progress toward more sophisticated understandings?
  • Given that your students’ understandings at the beginning of any new learning differ greatly, how do you both learn about your students’ thoughts and respond to them in ways that are productive? (This is different than testing kids prior knowledge or sorting students by ability. See Daro’s video)
  • Who do you turn to to help you think more about the math you teach, or they ways you respond to students? What professional relationships might be helpful for you?
  • What resources do you consult to help you develop your own understanding?

I’d love to continue the conversation about how we respond to our students’ thinking.  Leave a comment here or on Twitter @MarkChubb3

If interested in this topic, you might be interested in reading:

Advertisement

The Types of Questions we Ask: which categories of questions should we focus on?

I think we can all agree that there are many different ways for our students to show what they know or understand, and that some problems ask for deeper understanding than others. In fact, many standardized math assessments, like PISA, aim to ask students questions at varying difficult levels (PISA uses 6 difficulty levels) to assess the same concept/skill. If we can learn one thing from assessments like these hopefully it is how to expect more of our students by going deeper… and in math class, this means asking better questions.

Robert Kaplinsky is a great example of an educator who has helped us better understand how to ask better questions. His work on Depth of Knowledge (DOK) has helped many teachers reflect on the questions they ask and has offered teachers examples of what higher DOK questions/problems look like.

In Ontario though we actually have an achievement chart that is aimed to help us think more about the types of questions/problems we expect our students be able to do. Basically, it is a rubric showing 4 levels of achievement across 4 categories. In Ontario it is expected that every teacher evaluate their students based on each the these categories. Many teachers, however, struggle to see the differences between these categories. Marian Small recently was the keynote speaker at OAME where she helped us think more about the categories by showing us how to delineate between the different categories of questions/problems:

  • Knowledge
  • Understanding
  • Application
  • Thinking

Knowledge vs. Understanding

Below are a few of Marian Small’s examples of questions that are designed to help us see the difference between questions aimed at knowledge and questions aimed at understanding:

As you can see from the above examples, each of the knowledge questions ask students to provide a correct answer. However, each of the understanding questions require students to both get a correct answer AND be able to show that they understand some of the key relationships involved. Marian’s point in showing us these comparisons was to tell us that we need to spend much more time and attention making sure our students understand the math they are learning.

Each of the questions that asks students to show their understanding also help us see what knowledge our students have, but the other way around is not true!

Hopefully you can see the potential benefits of striving for understanding, but I do believe these shifts need to be deliberate. My recommendation to help us aim for understanding is to ask more questions that ask students to:

  • Draw a visual representation to show why something works
  • Provide an example that fits given criteria
  • Explain when examples will or won’t work
  • Make choices (i.e., which numbers, visual representations… will be best to show proof)
  • show their understanding of key “Big Ideas” and relationships

Application vs. Thinking

Below are a few examples that can help us delineate the differences between application and thinking:

These examples might be particularly important for us to think about. To begin with, application questions often use some or all of the following:

  • use a context
  • require students to use things they already should know
  • provide a picture(s) or example(s) for students to see
  • provide almost all of the information and ask the student to find what is missing

Thinking questions, on the other hand, are the basis for what Stein et. al called “Doing Mathematics“. In Marian’s presentation, she discussed with us that these types of questions are why those who enjoy mathematics like doing mathematics. Thinking and reasoning are at the heart of what mathematics is all about! Thinking questions typically require the student to:

  • use non-algorithmic thinking
  • make sense of the problem
  • use relevant knowledge
  • notice important features of the problem
  • choose a possible solution path and possibly adjust if needed
  • persevere to monitor their own progress

Let’s take a minute to compare questions aimed at application and questions aimed at thinking. Application questions, while quite helpful in learning mathematics concepts (contexts should be used AS students learn), they typically offer less depth than thinking questions. In each of the above application questions, a student could easily ignore the context and fall back on learned procedures. On the other hand, each of the thinking questions might require the student to make and test conjectures, using the same procedures repeatedly to find a possible solution.

Ideally, we need to spend more time where our students are thinking… more time discussing thinking questions… and focus more on the important relationships/connections that will arise through working on these problems.

Final Thoughts

Somehow we need to find the right balance between using the 4 types of questions above, however, we need to recognize that most textbooks, most teacher-made assessments, and most online resources focus heavily (if not exclusively) on knowledge and occasionally application. The balance is way off!

Focusing on being able to monitor our own types of questions isn’t enough though. We need to recognize that relationships/connections between concepts/representations are at the heart of expecting more from our students. We need to know that thinking and reasoning are HOW our students should be learning. We need to confront practices that stand in the way of us moving toward understanding and thinking, and set aside resources that focus mainly on knowledge or application. If we want to make strides forward, we need to find resources that will help US understand the material deeper and provide us with good examples.

Questions to Reflect on:

  • What did your last quiz or test or exit card look like? What is your current balance of question types?
  • What resources do you use? What balance do they have?
  • Where do you go to find better Understanding or Thinking questions?
  • What was the last problem you did that made you interested in solving it? What was it about that problem that made you interested? Likely it was a Thinking question. What was it about that problem that made it interesting?
  • Much of the work related to filling gaps, intervention, assessment driving learning… points teachers toward students’ missing knowledge. How can we focus our attention more toward understanding and thinking given this reality?
  • How can we better define “mastery” given the 4 categories above? Mastery must be seen as more than getting a bunch of simple knowledge questions correct!
  • Who do you turn to to help you think more about the questions you ask? What professional relationships might be helpful for you?

If you haven’t already, please take a look at Marian Small’s entire presentation where she labels understanding and thinking as the “fundamentals of mathematics”

I’d love to continue the conversation about the questions we ask of our students.  Leave a comment here or on Twitter @MarkChubb3

“Making Math Visual”

A few days ago I had the privilege of presenting at OAME in Ottawa on the topic of “Making Math Visual”.   If interested, here are some of my talking points for you to reflect on:

To get us started, we discussed an image created by Christopher Danielson and asked the group what they noticed:

a2

We noticed quite a lot in the image… and did a “how many” activity sharing various numbers we saw in the image.  After our discussions I explained that I had shared the same picture with a group of parents at a school’s parent night followed by the next picture.

a3

The picture above was more difficult for us as teachers to see the mathematics. While we, as math teachers, saw patterns in the placements of utensils, shapes and angles around the room, quantities of countable items, multiplicative relationships between utensils and place settings, volume of wine glasses, differences in heights of chairs, perimeter around the table…..  the group correctly guessed that many parents do not typically notice the mathematics around them.

So, my suggestion for the teachers in the room was to help change this:

a5

While I think it is important that we tackle the idea of seeing the world around us as being mathematical, a focus on making math visual needs to by MUCH more than this. To illustrate the kinds of visuals our students need to be experiencing, we completed a simple task independently:

a6

After a few minutes of thinking, we discussed research of the different ways we use fractions, along with the various visuals that are necessary for our students to explore in order for them to develop as fractional thinkers:

When we looked at the ways we typically use fractions, it’s easy to notice that WE, as teachers, might need to consider how a focus on representations might help us notice if we are providing our students with a robust (let’s call this a “relational“) view of the concepts our students are learning about.

a13

Data taken from 1 school’s teachers:

a14

Above you see the 6 ways of visualizing fractions, but if you zoom in, you will likely notice that much of the “quotient” understanding doesn’t include a visual at all… Really, the vast majority of fractional representations here from this school were “Part – Whole relationships (continuous) models”. If, our goal is to “make math visual” then I believe we really need to spend more time considering WHICH visuals are going to be the most helpful and how those models progress over time!

We continued to talk about Liping Ma’s work where she asked teachers to answer and represent the following problem:

a15

As you can see, being able to share a story or visual model for certain mathematics concepts seems to be a relative need. My suggestion was to really consider how a focus on visual models might be a place we can ALL learn from.

We then followed by a quick story of when a student told me that the following statement is true (click here for the full story) and my learning that came from it!

a17

So, why should we focus on making math visual?

a18

We then explored a statement that Jo Boaler shared in her Norms document:

a19

…and I asked the group to consider if there is something we learn in elementary school that can’t be represented visually?

If you have an idea to the previous question, I’d love to hear it, because none of us could think of a concept that can’t be represented visually.


I then shared a quick problem that grade 7 students in one of my schools had done (see here for the description):

a20

Along with a few different responses that students had completed:

a21

Most of the students in the class had responded much like the image above.  Most students in the class had confused linear metric relationships (1 meter = 100 cm) with metric units of area (1 meter squared is NOT the same as 100cm2).

a22

In fact, only two students had figured out the correct answer… which makes sense, since the students in the class didn’t learn about converting units of area through visuals.

a23

If you are wanting to help think about HOW to “make math visual”, below is some of the suggestions we shared:

a25
a26

And finally some advice about what we DON’T mean when talking about making mathematics visual:

a27
a28

You might recognize the image above from Graham Fletcher’s post/video where he removed all of the fractional numbers off each face in an attempt to make sure that the tools were used to help students learn mathematics, instead of just using them to get answers.

a29

I want to leave you with a few reflective questions:

  • Can all mathematics concepts in elementary be represented visually?
  • Why might a visual representation be helpful?
  • If a student can get a correct answer, but can’t represent what is going on, do they really “understand” the concept?
  • Are some representations more helpful than others?
  • How important is it that our students notice the mathematics around them?
  • How might a focus on visual representations help both us and our students deepen our understanding of the mathematics we are teaching/learning?
  • Where do you turn to help you learn more about or get specific examples of how to effectively use visuals?

I’d love to continue the conversation.  Feel free to write a response, or send me a message on Twitter ( @markchubb3 ).


If you are interested in all of the slides, you can take a look here

The role of “practice” in mathematics class

A few weeks ago a NYTimes published an article titled, Make Your Daughter Practice Math. She’ll Thank You Later, an opinion piece that, basically, asserts that girls would benefit from “extra required practice”.  I took a few minutes to look through the comments (which there are over 600) and noticed a polarizing set of personal comments related to what has worked or hasn’t worked for each person, or their own children.  Some sharing how practicing was an essential component for making them/their kids successful at mathematics, and others discussing stories related to frustration, humiliation and the need for children to enjoy and be interested in the subject.

Instead of picking apart the article and sharing the various issues I have with it (like the notion of “extra practice” should be given based on gender), or simply stating my own opinions, I think it would be far more productive to consider why practice might be important and specifically consider some key elements of what might make practice beneficial to more students.


To many, the term “practice” brings about childhood memories of completing pages of repeated random questions, or drills sheets where the same algorithm is used over and over again.  Students who successfully completed the first few questions typically had no issues completing each and every question.  For those who were successful, the belief is that the repetition helped.  For those who were less successful, the belief is that repeating an algorithm that didn’t make sense in the first place wasn’t helpful…  even if they can get an answer, they might still not understand (*Defining 2 opposing definitions of “understanding” here).

“Practice” for both of the views above is often thought of as rote tasks that are devoid of thinking, choices or sense making.  Before I share with you an alternative view of practice, I’d like to first consider how we have tackled “practice” for students who are developing as readers.

If we were to consider reading instruction for a moment, everyone would agree that it would be important to practice reading, however, most of us wouldn’t have thoughts of reading pages of random words on a page, we would likely think about picture books.  Books offer many important factors for young readers.  Pictures might help give clues to difficult words, the storyline offers interest and motivation to continue, and the messages within the book might bring about rich discussions related to the purpose of the book.  This kind of practice is both encourages students to continue reading, and helps them continue to get better at the same time.  However, this is very different from what we view as math “practice”.

In Dan Finkel’s Ted Talk (Five Principles of Extraordinary Math Teaching) he has attempted to help teachers and parents see the equivalent kind of practice for mathematics:

Finkel Quote


Below is a chart explaining the role of practice as it relates to what Dan Finkel calls play:

practice2

Take a look at the “Process” row for a moment.  Here you can see the difference between a repetitive drill kind of practice and the “playful experiences” kind of  practice Dan had called for.  Let’s take a quick example of how practice can be playful.


Students learning to add 2-digit numbers were asked to “practice” their understanding of addition by playing a game called “How Close to 100?”.  The rules:

  • Roll 2 dice to create a 2-digit number (your choice of 41 or 14)
  • Use base-10 materials as appropriate
  • Try to get as close to 100 as possible
  • 4th role you are allowed eliminating any 1 number IF you want

close to 100b

What choice would you make???  Some students might want to keep all 4 roles and use the 14 to get close to 100, while other students might take the 41 and try to eliminate one of the roles to see if they can get closer.


When practice involves active thinking and reasoning, our students get the practice they need and the motivation to sustain learning!  When practice allows students to gain a deeper understanding (in this case the visual of the base-10 materials) or make connections between concepts, our students are doing more than passive rule following – they are engaging in thinking mathematically!


In the end, we need to take greater care in making sure that the experiences we provide our students are aimed at the 5 strands shown below:

strands of mathematical proficency.png
Adding It Up: Helping Children Learn Mathematics


You might also be interested in thinking about how we might practice Geometrical terms/properties, or spatial reasoning, or exponents, or Bisectors


So I will leave you with some final thoughts:

  • What does “practice” look like in your classroom?  Does it involve thinking or decisions?  Would it be more engaging for your students to make practice involve more thinking?
  • How does this topic relate to the topic of “engagement”?  Is engagement about making tasks more fun or about making tasks require more thought?  Which view of engagement do you and your students subscribe to?
  • What does practice look like for your students outside of school?  Is there a place for practice at home?
  • Which of the 5 strands (shown above) are regularly present in your “practice” activities?  Are there strands you would like to make sure are embedded more regularly?

I’d love to continue the conversation about “practicing” mathematics.  Leave a comment here or on Twitter @MarkChubb3

The Importance of Contexts and Visuals

My wife Anne-Marie isn’t always impressed when I talk about mathematics, especially when I ask her to try something out for me, but on occasion I can get her to really think mathematically without her realizing how much math she is actually doing.  Here’s a quick story about one of those times, along with some considerations:


A while back Anne-Marie and I were preparing lunch for our three children.  It was a cold wintery day, so they asked for Lipton Chicken Noodle Soup.  If you’ve ever made Lipton Soup before you would know that you add a package of soup mix into 4 cups of water.

Lipton soup

Typically, my wife would grab the largest of our nesting measuring cups (the one marked 1 cup), filling it four times to get the total required 4 cups, however, on this particular day, the largest cup available was the 3/4 cup.

nesting cups.JPG

Here is how the conversation went:

Anne-Marie:  How many of these (3/4 cups) do I need to make 4 cups?

Me:  I don’t know.  How many do you think?  (attempting to give her time to think)

Anne-Marie:  Well… I know two would make a cup and a half… so… 4 of these would make 3 cups…

Me: OK…

Anne-Marie:  So, 5 would make 3 and 3/4 cups.

Me:  Mmhmm….

Anne-Marie:  So, I’d need a quarter cup more?

Me:  So, how much of that should you fill?  (pointing to the 3/4 cup in her hand)

Anne-Marie:  A quarter of it?  No, wait… I want a quarter of a cup, not a quarter of this…

Me:  Ok…

Anne-Marie:  Should I fill it 1/3 of the way?

Me:  Why do you think 1/3?

Anne-Marie:  Because this is 3/4s, and I only need 1 of the quarters.


The example I shared above illustrates sense making of a difficult concept – division of fractions – a topic that to many is far from our ability of sense making.  My wife, however, quite easily made sense of the situation using her reasoning instead of a formula or an algorithm.  To many students, however, division of fractions is learned first through a set of procedures.

I have wondered for quite some time why so many classrooms start with procedures and algorithms unill I came across Liping Ma’s book Knowing and Teaching Mathematics.  In her book she shares what happened when she asked American and Chinese teachers these 2 problems:

liping ma1

Here were the results:

Liping ma2

Now, keep in mind that the sample sizes for each group were relatively small (23 US teachers and 72 Chinese teachers were asked to complete two tasks), however, it does bring bring about a number of important questions:

  • How does the training of American and Chinese teachers differ?
  • Did both groups of teachers rely on the learning they had received as students, or learning they had received as teachers?
  • What does it mean to “Understand” division of fractions?  Computing correctly?  Beging able to visually represent what is gonig on when fractions are divided? Being able to know when we are being asked to divide?  Being able to create our own division of fraction problems?
  • What experiences do we need as teachers to understand this concept?  What experiences should we be providing our students?

Visual Representations

In order to understand division of fractions, I believe we need to understand what is actually going on.  To do this, visuals are a necessity!  A few examples of visual representations could include:

A number line:

three quarters NL

A volume model:

GlassMeasuringCup32oz117022_x

An area model:


Starting with a Context

Starting with a context is about allowing our students to access a concept using what they already know (it is not about trying to make the math practical or show students when a concept might be used someday).  Starting with a context should be about inviting sense-making and thinking into the conversation before any algorithm or set of procedures are introduced.  I’ve already shared an example of a context (preparing soup) that could be used to launch a discussion about division of fractions, but now it’s your turn:

Design your own problem that others could use to launch a discussion of division of fractions.  Share your problem!  


A few things to reflect on:

As always, I’d love to hear your thoughts.  Leave a reply here on Twitter (@MarkChubb3)

The Zone of Optimal Confusion

In the Ontario curriculum we have many expectations (standards) that tell us students are expected to, “Determine through investigation…” or at least contain the phrase “…through investigation…”.  In fact, in every grade there are many expectations with these phrases. While these expectations are weaved throughout our curriculum, and are particularly noticeable throughout concepts that are new for students, the reality is that many teachers might not be familiar with what it looks like for students to determine something on their own.  Probably in part because this was not how we experienced mathematics as students ourselves!

First of all, I believe the reason behind why investigating is included in our curriculum is an important conversation!   I’ve shared this before, but maybe it will help explain why we want our students to investigate:

Teaching Approaches - New

The chart shows 3 different teaching approaches and details for each (for more thoughts about the chart you might be interested in What does Day 1 Look Like). Hopefully you have made the connection between the Constructivist approach and the act of “determining through investigation.”  Having our students construct their understanding can’t be overstated. For those students you have in your classroom that typically aren’t engaged, or who give up easily, or who typically struggle… this process of determining through investigation is the missing ingredient in their development. Skip this step and start with you explaining procedures, and you lose several students!

Traditionally, however, many teachers’ goal was to scaffold the learning.  They believed that a gradual release of responsibilities would be the most helpful.  Cathy Seeley in her book Making Sense of Math: How to Help Every Student Become a Mathematical Thinker and Problem Solver explains the issue clearly:Gradual Release

Cathy Seeley quote

In the two pieces above Cathy explains the “upside-down teaching” approach.  This is exactly the approach we believe our curriculum is suggesting when it says “determine through investigation,”  and exactly the approach suggested here:

Page 24 - paragraph 2
Page 24 of the Ontario Curriculum


At the heart of this is the idea of “productive struggle”, we want our students actively constructing their own thinking.  However, I wonder if we could ever explain what “productive struggle” looks / feels like without ever experiencing it ourselves?  How might the following graphic help us reflect on our own understanding of “productive struggle” and “engagement”?

img_3336
Research Gate, Confusion can be Beneficial for Learning


I think it would be a wonderful opportunity for us to share problems and tasks that allow for productive struggle, that have student reasoning as its goal, problems / tasks that fit into this “zone of optimal confusion”.

In the end, we know that these tasks, facilitated well, have the potential for deep learning because the act of being confused, working through this confusion, then consolidating the learning effectively is how lasting learning happens!

Let’s commit to sharing a sample, send a link to a problem / task that offers students to be confused and work through that confusion to deepen understanding.  Let’s continue sharing so that we know what these ideals look like for ourselves, so we can experience them with our own students!

 

 

 

 

 

 

 

 

Focus on Relational Understanding

Forty years ago, Richard Skemp wrote one of the most important articles, in my opinion, about mathematics, and the teaching and learning of mathematics called Relational Understanding and Instrumental Understanding.  If you haven’t already read the article, I think you need to add this to your summer reading (It’s linked above).

Skemp quite nicely illustrates the fact that many of us have completely different, even contradictory definitions, of the term “understanding”.   Here are the 2 opposing definitions of the word “understanding”:

“Instrumental understanding” can be thought of as knowing the rules and procedures without understanding why those rules or procedures work. Students who have been taught instrumentally can perform calculations, apply procedures… but do not necessarily understand the mathematics behind the rules or procedures.

Instrumental Understanding

“Relational understanding”, on the other hand, can be thought of as understanding how and why the rules and procedures work.  Students who are taught relationally are more likely to remember the procedures because they have truly understood why they work, they are more likely to retain their understanding longer, more likely to connect new learning with previous learning, and they are less likely to make careless mistakes.

Relational understanding

Think of the two types of understanding like this:

Shared by David Wees

Students who are taught instrumentally come to see mathematics as isolated pieces of knowledge. They are expected to remember procedures for each and every concept/skill.  Each new skill requires a new set of procedures.  However, those who are taught relationally make connections between and within concepts and skills.  Those with a relational understanding can learn new concepts easier, retain previous concepts, and are able to deviate from formulas/rules given different problems easier because of the connections they have made.

While it might seem obvious that relational understanding is best, it requires us to understand the mathematics in ways that we were never taught in order for us to provide the best experiences for our students. It also means that we need to start with our students’ current understandings instead of starting with the rules and procedures.

Skemp articulates how much of an issue this really is in our educational system when he explains the different types of mismatches that can occur between how students are taught, and how students learn.  Take a look:

Relational Understanding chart

Notice the top right quadrant for a second.  If a child wants to learn instrumentally (they only want to know the steps/rules to solve today’s problem) and the teacher instead offers tasks/problems that asks the child to think or reason mathematically, the student will likely be frustrated for the short term.  You might see students that lack perseverance, or are eager for assistance because they are not used to thinking for themselves.  However, as their learning progresses, they will come to make sense of their mathematics and their initial frustration will fade.

On the other hand, if a teacher teaches instrumentally but a child wants to learn relationally (they want/need to understand why procedures work) a more serious mismatch will exist.  Students who want to make sense of the concepts they are learning, but are not given the time and conditions to experience mathematics in this way will come to believe that they are not good at mathematics.  These students soon disassociate with mathematics and will stop taking math classes as soon as they can.  These students view themselves as “not a math person” because their experiences have not helped them make sense of the mathematics they were learning.

While the first mismatch might seem frustrating for us as teachers, the frustration is short lived. On the other hand, the second mismatch has life-long consequences!


I’ve been thinking about the various initiatives/ professional development opportunities… that I have been part of, or have been available online or through print that might help us think about how to move from an instrumental understanding to a relational understanding of mathematics.  Here are a few I want to share with you:

Phil Daro’s Against Answer Getting video highlights a few instrumental practices that might be common in some schools.  Below is the “Butterfly” method of adding fractions he shares as an “answer getting” strategy.  While following these simple steps might help our students get the answer to this question, Phil points out that these students will be unable to solve an addition problem with 3 fractions.  These students “understand” how to get the answer, but in no way understand how the answer relates to addends.

Daro - Butterfly.jpg

On the other hand, teachers who teach relationally provide their students with contexts, models (i.e, number lines, arrays…), manipulatives (i.e., cuisenaire rods, pattern blocks…) and visuals to help their students develop a relational understanding.  If you are interested in learning more about helping your students develop a relational understanding of fractions, take a look at a few resources that will help:


Tina Cardone and a group of math teachers across Twitter (part of the #MTBoS) created a document called Nix The Tricks that points out several instrumental “tricks” that do not lead to relational understanding.  For example, “turtle multiplication” is an instrumental strategy that will not help our students understand the mathematics that is happening.  Students can draw a collar and place an egg below, but in no way will this help with future concepts!Turtle mult.jpg

Teachers focused on relational understanding again use representations that allow their students to visualize what is happening.  Connections between representations, strategies and the big ideas behind multiplication are developed over time.

Take a look at some wonderful resources that promote a relational understanding of multiplication:

Each of the above are developmental in nature, they focus on representations and connections.


So how do we make these shifts?  Here are a few of my thoughts:

  1. Notice instrumental teaching practices.
  2. Learn more about how to move from instrumental to relational teaching.
  3. Align assessment practices to expect relational understanding.

Goal 1 – Notice instrumental teaching practices.

Many of these are easy to spot.  Here is a small sample from Pinterest:

The rules/procedures shared here ask students to DO without understanding.  The issue is that there are actually countless instrumental practices out there, so my goal is actually much harder than it seems.  Think about something you teach that involves rules or procedures.  How can you help your students develop a relational understanding of this concept?


Goal 2 – Learn more about how to move from instrumental to relational teaching.

I don’t think this is something we can do on our own.  We need the help of professional resources (Marian Small, Van de Walle, Fosnot, and countless others have helped produce resources that are classroom ready, yet help us to see mathematics in ways that we probably didn’t experience as students), mathematics coaches, and the insights of teachers across the world (there is a wonderful community on Twitter waiting to share and learn with you).

I strongly encourage you to look at chapter 1 of Van de Walle’s Teaching Student Centered Mathematics where it will give a clearer view of relational understanding and how to teach so our students can learn relationally.

However we are learning, we need to be able to make new connections, see the concepts in different ways in order for us to know how to provide relational teaching for our students.


Goal 3 – Align assessment practices to expect relational understanding.

This is something I hope to continue to blog about.  If we want our students to have a relational understanding, we need to be clear about what we expect our students to be able to do and understand.  Looking at developmental landscapes, continuums and trajectories will help here.  Below is Cathy Fosnot’s landscape of learning for multiplication and division.  While this might look complicated, there are many different representations, strategies and big ideas that our students need to experience to gain a relational understanding.

Fosnot landscape2
Investigating Multiplication and Division Grades 3-5

Asking questions or problems that expect relational understanding is key as well.  Take a look at one of Marian Small’s slideshows below.  Toward the end of each she shares the difference between questions that focus on knowledge and questions that focus on understanding.


I hope whatever your professional learning looks like this year (at school, on Twitter, professional reading…) there is a focus on helping build your relational understanding of the concepts you teach, and a better understanding of how to build a relational understanding for your students.  This will continue to be my priority this year!