The role of “practice” in mathematics class

A few weeks ago a NYTimes published an article titled, Make Your Daughter Practice Math. She’ll Thank You Later, an opinion piece that, basically, asserts that girls would benefit from “extra required practice”.  I took a few minutes to look through the comments (which there are over 600) and noticed a polarizing set of personal comments related to what has worked or hasn’t worked for each person, or their own children.  Some sharing how practicing was an essential component for making them/their kids successful at mathematics, and others discussing stories related to frustration, humiliation and the need for children to enjoy and be interested in the subject.

Instead of picking apart the article and sharing the various issues I have with it (like the notion of “extra practice” should be given based on gender), or simply stating my own opinions, I think it would be far more productive to consider why practice might be important and specifically consider some key elements of what might make practice beneficial to more students.


To many, the term “practice” brings about childhood memories of completing pages of repeated random questions, or drills sheets where the same algorithm is used over and over again.  Students who successfully completed the first few questions typically had no issues completing each and every question.  For those who were successful, the belief is that the repetition helped.  For those who were less successful, the belief is that repeating an algorithm that didn’t make sense in the first place wasn’t helpful…  even if they can get an answer, they might still not understand (*Defining 2 opposing definitions of “understanding” here).

“Practice” for both of the views above is often thought of as rote tasks that are devoid of thinking, choices or sense making.  Before I share with you an alternative view of practice, I’d like to first consider how we have tackled “practice” for students who are developing as readers.

If we were to consider reading instruction for a moment, everyone would agree that it would be important to practice reading, however, most of us wouldn’t have thoughts of reading pages of random words on a page, we would likely think about picture books.  Books offer many important factors for young readers.  Pictures might help give clues to difficult words, the storyline offers interest and motivation to continue, and the messages within the book might bring about rich discussions related to the purpose of the book.  This kind of practice is both encourages students to continue reading, and helps them continue to get better at the same time.  However, this is very different from what we view as math “practice”.

In Dan Finkel’s Ted Talk (Five Principles of Extraordinary Math Teaching) he has attempted to help teachers and parents see the equivalent kind of practice for mathematics:

Finkel Quote


Below is a chart explaining the role of practice as it relates to what Dan Finkel calls play:

practice2

Take a look at the “Process” row for a moment.  Here you can see the difference between a repetitive drill kind of practice and the “playful experiences” kind of  practice Dan had called for.  Let’s take a quick example of how practice can be playful.


Students learning to add 2-digit numbers were asked to “practice” their understanding of addition by playing a game called “How Close to 100?”.  The rules:

  • Roll 2 dice to create a 2-digit number (your choice of 41 or 14)
  • Use base-10 materials as appropriate
  • Try to get as close to 100 as possible
  • 4th role you are allowed eliminating any 1 number IF you want

close to 100b

What choice would you make???  Some students might want to keep all 4 roles and use the 14 to get close to 100, while other students might take the 41 and try to eliminate one of the roles to see if they can get closer.


When practice involves active thinking and reasoning, our students get the practice they need and the motivation to sustain learning!  When practice allows students to gain a deeper understanding (in this case the visual of the base-10 materials) or make connections between concepts, our students are doing more than passive rule following – they are engaging in thinking mathematically!


In the end, we need to take greater care in making sure that the experiences we provide our students are aimed at the 5 strands shown below:

strands of mathematical proficency.png
Adding It Up: Helping Children Learn Mathematics

You might also be interested in thinking about how we might practice Geometrical terms/properties, or spatial reasoning, or exponents, or Bisectors


So I will leave you with some final thoughts:

  • What does “practice” look like in your classroom?  Does it involve thinking or decisions?  Would it be more engaging for your students to make practice involve more thinking?
  • How does this topic relate to the topic of “engagement”?  Is engagement about making tasks more fun or about making tasks require more thought?  Which view of engagement do you and your students subscribe to?
  • What does practice look like for your students outside of school?  Is there a place for practice at home?
  • Which of the 5 strands (shown above) are regularly present in your “practice” activities?  Are there strands you would like to make sure are embedded more regularly?

I’d love to continue the conversation about “practicing” mathematics.  Leave a comment here or on Twitter @MarkChubb3

 

Advertisements

The Importance of Contexts and Visuals

My wife Anne-Marie isn’t always impressed when I talk about mathematics, especially when I ask her to try something out for me, but on occasion I can get her to really think mathematically without her realizing how much math she is actually doing.  Here’s a quick story about one of those times, along with some considerations:


A while back Anne-Marie and I were preparing lunch for our three children.  It was a cold wintery day, so they asked for Lipton Chicken Noodle Soup.  If you’ve ever made Lipton Soup before you would know that you add a package of soup mix into 4 cups of water.

Lipton soup

Typically, my wife would grab the largest of our nesting measuring cups (the one marked 1 cup), filling it four times to get the total required 4 cups, however, on this particular day, the largest cup available was the 3/4 cup.

nesting cups.JPG

Here is how the conversation went:

Anne-Marie:  How many of these (3/4 cups) do I need to make 4 cups?

Me:  I don’t know.  How many do you think?  (attempting to give her time to think)

Anne-Marie:  Well… I know two would make a cup and a half… so… 4 of these would make 3 cups…

Me: OK…

Anne-Marie:  So, 5 would make 3 and 3/4 cups.

Me:  Mmhmm….

Anne-Marie:  So, I’d need a quarter cup more?

Me:  So, how much of that should you fill?  (pointing to the 3/4 cup in her hand)

Anne-Marie:  A quarter of it?  No, wait… I want a quarter of a cup, not a quarter of this…

Me:  Ok…

Anne-Marie:  Should I fill it 1/3 of the way?

Me:  Why do you think 1/3?

Anne-Marie:  Because this is 3/4s, and I only need 1 of the quarters.


The example I shared above illustrates sense making of a difficult concept – division of fractions – a topic that to many is far from our ability of sense making.  My wife, however, quite easily made sense of the situation using her reasoning instead of a formula or an algorithm.  To many students, however, division of fractions is learned first through a set of procedures.

I have wondered for quite some time why so many classrooms start with procedures and algorithms unill I came across Liping Ma’s book Knowing and Teaching Mathematics.  In her book she shares what happened when she asked American and Chinese teachers these 2 problems:

liping ma1

Here were the results:

Liping ma2

Now, keep in mind that the sample sizes for each group were relatively small (23 US teachers and 72 Chinese teachers were asked to complete two tasks), however, it does bring bring about a number of important questions:

  • How does the training of American and Chinese teachers differ?
  • Did both groups of teachers rely on the learning they had received as students, or learning they had received as teachers?
  • What does it mean to “Understand” division of fractions?  Computing correctly?  Beging able to visually represent what is gonig on when fractions are divided? Being able to know when we are being asked to divide?  Being able to create our own division of fraction problems?
  • What experiences do we need as teachers to understand this concept?  What experiences should we be providing our students?

Visual Representations

In order to understand division of fractions, I believe we need to understand what is actually going on.  To do this, visuals are a necessity!  A few examples of visual representations could include:

A number line:

three quarters NL

A volume model:

GlassMeasuringCup32oz117022_x

An area model:


Starting with a Context

Starting with a context is about allowing our students to access a concept using what they already know (it is not about trying to make the math practical or show students when a concept might be used someday).  Starting with a context should be about inviting sense-making and thinking into the conversation before any algorithm or set of procedures are introduced.  I’ve already shared an example of a context (preparing soup) that could be used to launch a discussion about division of fractions, but now it’s your turn:

Design your own problem that others could use to launch a discussion of division of fractions.  Share your problem!  


A few things to reflect on:

As always, I’d love to hear your thoughts.  Leave a reply here on Twitter (@MarkChubb3)

The Zone of Optimal Confusion

In the Ontario curriculum we have many expectations (standards) that tell us students are expected to, “Determine through investigation…” or at least contain the phrase “…through investigation…”.  In fact, in every grade there are many expectations with these phrases. While these expectations are weaved throughout our curriculum, and are particularly noticeable throughout concepts that are new for students, the reality is that many teachers might not be familiar with what it looks like for students to determine something on their own.  Probably in part because this was not how we experienced mathematics as students ourselves!

First of all, I believe the reason behind why investigating is included in our curriculum is an important conversation!   I’ve shared this before, but maybe it will help explain why we want our students to investigate:

Teaching Approaches - New

The chart shows 3 different teaching approaches and details for each (for more thoughts about the chart you might be interested in What does Day 1 Look Like). Hopefully you have made the connection between the Constructivist approach and the act of “determining through investigation.”  Having our students construct their understanding can’t be overstated. For those students you have in your classroom that typically aren’t engaged, or who give up easily, or who typically struggle… this process of determining through investigation is the missing ingredient in their development. Skip this step and start with you explaining procedures, and you lose several students!

Traditionally, however, many teachers’ goal was to scaffold the learning.  They believed that a gradual release of responsibilities would be the most helpful.  Cathy Seeley in her book Making Sense of Math: How to Help Every Student Become a Mathematical Thinker and Problem Solver explains the issue clearly:Gradual Release

Cathy Seeley quote

In the two pieces above Cathy explains the “upside-down teaching” approach.  This is exactly the approach we believe our curriculum is suggesting when it says “determine through investigation,”  and exactly the approach suggested here:

Page 24 - paragraph 2
Page 24 of the Ontario Curriculum

At the heart of this is the idea of “productive struggle”, we want our students actively constructing their own thinking.  However, I wonder if we could ever explain what “productive struggle” looks / feels like without ever experiencing it ourselves?  How might the following graphic help us reflect on our own understanding of “productive struggle” and “engagement”?

img_3336
Research Gate, Confusion can be Beneficial for Learning

I think it would be a wonderful opportunity for us to share problems and tasks that allow for productive struggle, that have student reasoning as its goal, problems / tasks that fit into this “zone of optimal confusion”.

In the end, we know that these tasks, facilitated well, have the potential for deep learning because the act of being confused, working through this confusion, then consolidating the learning effectively is how lasting learning happens!

Let’s commit to sharing a sample, send a link to a problem / task that offers students to be confused and work through that confusion to deepen understanding.  Let’s continue sharing so that we know what these ideals look like for ourselves, so we can experience them with our own students!

 

 

 

 

 

 

 

 

Focus on Relational Understanding

Forty years ago, Richard Skemp wrote one of the most important articles, in my opinion, about mathematics, and the teaching and learning of mathematics called Relational Understanding and Instrumental Understanding.  If you haven’t already read the article, I think you need to add this to your summer reading (It’s linked above).

Skemp quite nicely illustrates the fact that many of us have completely different, even contradictory definitions, of the term “understanding”.   Here are the 2 opposing definitions of the word “understanding”:

“Instrumental understanding” can be thought of as knowing the rules and procedures without understanding why those rules or procedures work. Students who have been taught instrumentally can perform calculations, apply procedures… but do not necessarily understand the mathematics behind the rules or procedures.

Instrumental2.png

“Relational understanding”, on the other hand, can be thought of as understanding how and why the rules and procedures work.  Students who are taught relationally are more likely to remember the procedures because they have truly understood why they work, they are more likely to retain their understanding longer, more likely to connect new learning with previous learning, and they are less likely to make careless mistakes.

Relational2.png

Think of the two types of understanding like this:

 

Shared by David Wees

Students who are taught instrumentally come to see mathematics as isolated pieces of knowledge. They are expected to remember procedures for each and every concept/skill.  Each new skill requires a new set of procedures.  However, those who are taught relationally make connections between and within concepts and skills.  Those with a relational understanding can learn new concepts easier, retain previous concepts, and are able to deviate from formulas/rules given different problems easier because of the connections they have made.

 

While it might seem obvious that relational understanding is best, it requires us to understand the mathematics in ways that we were never taught in order for us to provide the best experiences for our students. It also means that we need to start with our students’ current understandings instead of starting with the rules and procedures.

Skemp articulates how much of an issue this really is in our educational system when he explains the different types of mismatches that can occur between how students are taught, and how students learn.  Take a look:

Instrumental vs Relational

Notice the top right quadrant for a second.  If a child wants to learn instrumentally (they only want to know the steps/rules to solve today’s problem) and the teacher instead offers tasks/problems that asks the child to think or reason mathematically, the student will likely be frustrated for the short term.  You might see students that lack perseverance, or are eager for assistance because they are not used to thinking for themselves.  However, as their learning progresses, they will come to make sense of their mathematics and their initial frustration will fade.

On the other hand, if a teacher teaches instrumentally but a child wants to learn relationally (they want/need to understand why procedures work) a more serious mismatch will exist.  Students who want to make sense of the concepts they are learning, but are not given the time and conditions to experience mathematics in this way will come to believe that they are not good at mathematics.  These students soon disassociate with mathematics and will stop taking math classes as soon as they can.  These students view themselves as “not a math person” because their experiences have not helped them make sense of the mathematics they were learning.

While the first mismatch might seem frustrating for us as teachers, the frustration is short lived. On the other hand, the second mismatch has life-long consequences!


I’ve been thinking about the various initiatives/ professional development opportunities… that I have been part of, or have been available online or through print that might help us think about how to move from an instrumental understanding to a relational understanding of mathematics.  Here are a few I want to share with you:

Phil Daro’s Against Answer Getting video highlights a few instrumental practices that might be common in some schools.  Below is the “Butterfly” method of adding fractions he shares as an “answer getting” strategy.  While following these simple steps might help our students get the answer to this question, Phil points out that these students will be unable to solve an addition problem with 3 fractions.  These students “understand” how to get the answer, but in no way understand how the answer relates to addends.

Daro - Butterfly.jpg

On the other hand, teachers who teach relationally provide their students with contexts, models (i.e, number lines, arrays…), manipulatives (i.e., cuisenaire rods, pattern blocks…) and visuals to help their students develop a relational understanding.  If you are interested in learning more about helping your students develop a relational understanding of fractions, take a look at a few resources that will help:


Tina Cardone and a group of math teachers across Twitter (part of the #MTBoS) created a document called Nix The Tricks that points out several instrumental “tricks” that do not lead to relational understanding.  For example, “turtle multiplication” is an instrumental strategy that will not help our students understand the mathematics that is happening.  Students can draw a collar and place an egg below, but in no way will this help with future concepts!Turtle mult.jpg

Teachers focused on relational understanding again use representations that allow their students to visualize what is happening.  Connections between representations, strategies and the big ideas behind multiplication are developed over time.

Take a look at some wonderful resources that promote a relational understanding of multiplication:

Each of the above are developmental in nature, they focus on representations and connections.


So how do we make these shifts?  Here are a few of my thoughts:

  1. Notice instrumental teaching practices.
  2. Learn more about how to move from instrumental to relational teaching.
  3. Align assessment practices to expect relational understanding.

Goal 1 – Notice instrumental teaching practices.

Many of these are easy to spot.  Here is a small sample from Pinterest:

 

The rules/procedures shared here ask students to DO without understanding.  The issue is that there are actually countless instrumental practices out there, so my goal is actually much harder than it seems.  Think about something you teach that involves rules or procedures.  How can you help your students develop a relational understanding of this concept?


Goal 2 – Learn more about how to move from instrumental to relational teaching.

I don’t think this is something we can do on our own.  We need the help of professional resources (Marian Small, Van de Walle, Fosnot, and countless others have helped produce resources that are classroom ready, yet help us to see mathematics in ways that we probably didn’t experience as students), mathematics coaches, and the insights of teachers across the world (there is a wonderful community on Twitter waiting to share and learn with you).

I strongly encourage you to look at chapter 1 of Van de Walle’s Teaching Student Centered Mathematics where it will give a clearer view of relational understanding and how to teach so our students can learn relationally.

However we are learning, we need to be able to make new connections, see the concepts in different ways in order for us to know how to provide relational teaching for our students.


Goal 3 – Align assessment practices to expect relational understanding.

This is something I hope to continue to blog about.  If we want our students to have a relational understanding, we need to be clear about what we expect our students to be able to do and understand.  Looking at developmental landscapes, continuums and trajectories will help here.  Below is Cathy Fosnot’s landscape of learning for multiplication and division.  While this might look complicated, there are many different representations, strategies and big ideas that our students need to experience to gain a relational understanding.

Fosnot landscape2
Investigating Multiplication and Division Grades 3-5

Asking questions or problems that expect relational understanding is key as well.  Take a look at one of Marian Small’s slideshows below.  Toward the end of each she shares the difference between questions that focus on knowledge and questions that focus on understanding.


I hope whatever your professional learning looks like this year (at school, on Twitter, professional reading…) there is a focus on helping build your relational understanding of the concepts you teach, and a better understanding of how to build a relational understanding for your students.  This will continue to be my priority this year!