## Central Tendencies Puzzles

Central Tendency Puzzle templates for you to check out. I’d love to hear some feedback on these.

Data management is becoming an increasingly important topic as our students try to make sense of news, social media posts, advertisements… Especially as more and more of these sources aim to try to convince you to believe something (intentionally or not).

Part of our job as math teachers needs to include helping our students THINK as they are collecting / organizing / analyzing data. For example, when looking at data we want our students to:

• Notice the writer’s choice of scale(s)
• Notice the decisions made for categories
• Notice which data is NOT included
• Notice the shape of the data and spatial / proportional connections (twice as much/many)
• Notice the choice of type of graph chosen
• Notice irregularities in the data
• Notice similarities among or between data
• Consider ways to describe the data as a whole (i.e., central tendency) or the story it is telling over time (i.e., trends)

While each of these points are important, I’d like to offer a way we can help our students explore the last piece from above – central tendencies.

## Central Tendency Puzzle Templates

To complete each puzzle, you will need to make decisions about where to start, which numbers are most likely and then adjust based on what makes sense or not. I’d love to have some feedback on the puzzles.

Linked here are the Central Tendencies Puzzles.

## Questions to Reflect on:

• How will your students be learning about central tendencies before doing these puzzles? What kinds of experience might lead up to these puzzles? (See A Few Simple Beliefs)
• How might puzzles like these offer your students practice for the skills they have been learning? (See purposeful practice)
• How might puzzles like this relate to playing Skyscraper puzzles?
• What is the current balance of questions / problems in your class? Are your students spending more time calculating, or deciding on which calculations are important? What balance would you like?
• How might these puzzles help you meet the varied needs within a mixed ability classroom?
• If students start to understand how to solve one of these, would you consider asking your students to make up their own puzzles? (Ideas for making your own problems here).
• Would you want students to work alone, in pairs, in groups? Why?
• Would you prefer all of your students doing the same puzzle / game / problem, or have many puzzles / games / problems to choose from? How might this change class conversations afterward?
• How will you consolidate the learning afterward? (See Never Skip the Closing of the Lesson)
• As the teacher, what will you be doing when students are playing? How might listening to student thinking help you learn more about your students? (See: Noticing and Wondering: A powerful tool for assessment)

## Rushing for Interventions

I see students working in groups all the time…  Students working collaboratively in pairs or small groups having rich discussions as they sort shapes by specific properties, students identifying and extending their partner’s visual patterns, students playing games aimed at improving their procedural fluency, students cooperating to make sense of a low-floor/high-ceiling problem…..

When we see students actively engaged in rich mathematics activities, working collaboratively, it provides opportunities for teachers to effectively monitor student learning (notice students’ thinking, provide opportunities for rich questioning, and lead to important feedback and next steps…) and prepare the teacher for the lesson close.  Classrooms that engage in these types of cooperative learning opportunities see students actively engaged in their learning.  And more specifically, we see students who show Agency, Ownership and Identity in their mathematics learning (See TruMath‘s description on page 10).

On the other hand, some classrooms might be pushing for a different vision of what groups can look like in a mathematics classroom.  One where a teachers’ role is to continually diagnose students’ weaknesses, then place students into ability groups based on their deficits, then provide specific learning for each of these groups.  To be honest, I understand the concept of small groups that are formed for this purpose, but I think that many teachers might be rushing for these interventions too quickly.

First, let’s understand that small group interventions have come from the RTI (Response to Intervention) model.  Below is a graphic created by Karen Karp shared in Van de Walle’s Teaching Student Centered Mathematics to help explain RTI:

As you can see, given a high quality mathematics program, 80-90% of students can learn successfully given the same learning experiences as everyone.  However, 5-10% of students (which likely are not always the same students) might struggle with a given topic and might need additional small-group interventions.  And an additional 1-5% might need might need even more specialized interventions at the individual level.

The RTI model assumes that we, as a group, have had several different learning experiences over several days before Tier 2 (or Tier 3) approaches are used.  This sounds much healthier than a model of instruction where students are tested on day one, and placed into fix-up groups based on their deficits, or a classroom where students are placed into homogeneous groupings that persist for extended periods of time.

Principles to Action (NCTM) suggests that what I’m talking about here is actually an equity issue!

We know that students who are placed into ability groups for extended periods of time come to have their mathematical identity fixed because of how they were placed.  That is, in an attempt to help our students learn, we might be damaging their self perceptions, and therefore, their long-term educational outcomes.

###### Tier 1 Instruction

While I completely agree that we need to be giving attention to students who might be struggling with mathematics, I believe the first thing we need to consider is what Tier 1 instruction looks like that is aimed at making learning accessible to everyone.  Tier 1 instruction can’t simply be direct instruction lessons and whole group learning.  To make learning mathematics more accessible to a wider range of students, we need to include more low-floor/high-ceiling tasks, continue to help our students spatalize the concepts they are learning, as well as have a better understanding of developmental progressions so we are able to effectively monitor student learning so we can both know the experiences our students will need to be successful and how we should be responding to their thinking.  Let’s not underestimate how many of our students suffer from an “experience gap”, not an “achievement gap”!

If you are interested in learning more about what Tier 1 instruction can look like as a way to support a wider range of students, please take a look at one of the following:

###### Tier 2 Instruction

Tier 2 instruction is important.  It allows us to give additional opportunities for students to learn the things they have been learning over the past few days/weeks in a small group.  Learning in a small group with students who are currently struggling with the content they are learning can give us opportunities to better know our students’ thinking.  However, I believe some might be jumping past Tier 1 instruction (in part or completely) in an attempt to make sure that we are intervening. To be honest, this doesn’t make instructional sense to me! If we care about our content, and care about our students’ relationship with mathematics, this might be the wrong first move.

So, let’s make sure that Tier 2 instruction is:

• Provided after several learning experiences for our students
• Flexibly created, and easily changed based on the content being learned at the time
• Focused on student strengths and areas of need, not just weaknesses
• Aimed at honoring students’ agency, ownership and identity as mathematicians
• Temporary!

If you are interested in learning more about what Tier 2 interventions can look like take a look at one of the following:

Instead of seeing mathematics as being learned every day as an approach to intervene, let’s continue to learn more about what Tier 1 instruction can look like!  Or maybe you need to hear it from John Hattie:

Or from Jo Boaler:

###### Final Thoughts

If you are currently in a school that uses small group instruction in mathematics, I would suggest that you reflect on a few things:

• How do your students see themselves as mathematicians?  How might the topics of Agency, Authority and Identity relate to small group instruction?
• What fixed mindset messaging do teachers in your building share “high kids”, “level 2 students”, “she’s one of my low students”….?  What fixed mindset messages might your students be hearing?
• When in a learning cycle do you employ small groups?  Every day?  After several days of learning a concept?
• How flexible are your groups?  Are they based on a wholistic leveling of your students, or based specifically on the concept they are learning this week?
• How much time do these small groups receive?  Is it beyond regular instructional timelines, or do these groups form your Tier 1 instructional time?
• If Karp/Van de Walle suggests that 80-90% of students can be successful in Tier 1, how does this match what you are seeing?  Is there a need to learn more about how Tier 1 approaches can meet the needs of this many students?
• What are the rest of your students doing when you are working with a small group?  Is it as mathematically rich as the few you’re working with in front of you?
• Do you believe that all of your students are capable to learn mathematics and to think mathematically?

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

## Targeted Instruction

#### Issues with Individualized / Targeted Instruction

Individualized or targeted instruction makes sense in a lot of ways.  The idea is to figure out what a student’s needs are, then provide opportunities for them to get better in this area.  In practice, however, what often happens is that we end up setting different learning paths for different students which actually creates more inequities than it helps close gaps.  In my experience, having different students learning different things might be helpful to those who are being challenged, but does a significant disservice to those who are deemed “not ready” to learn what others are learning.  For example, in the 3 pathways shared above, it was suggested that the class be split into 3 groups; one working on defining terms, one learning about properties of shapes and the last group would spend time sorting shapes in various ways.  If we thought of this in terms of development, each group of students would be set on a completely different path.  Those working on developing “recognition” tasks (See Van Hiele’s Model below) would be working on low-level tasks.  Instead of providing experiences that might help them make sense of Geometric relationships, they would be stuck working on tasks that focus on memory without meaning.

When we aim to find specific tasks for specific students, we assume that students are not capable of learning things others are learning.  This creates low expectations for our students!  Van de Walle says it best in his book Teaching Student Centered Mathematics:

Determining how to place students in groups is an important decision.  Avoid continually grouping by ability.  This kind of grouping, although well-intentioned, perpetuates low levels of learning and actually increases the gap between more and less dependent students.

Targeted instruction might make sense on paper, but there are several potential flaws:

• Students enter into tracks that do not actually reflect their ability.  There is plenty of research showing that significant percentages of students are placed in the wrong grouping by their teachers.  Whether they have used some kind of test or not, groupings are regularly flawed in predicting what students are potentially ready for.
• Pre-determining who is ready for what learning typically results in ability grouping, which is probably the strongest fixed mindset message a school can send students.  Giving an entrance ticket that determines certain students can’t engage in the learning others are doing tells students who is good at math, and who isn’t.  Our students are exquisitely keen at noticing who we believe can be successful, which shapes their own beliefs about themselves.
• The work given to those in lower groups is typically less cognitively demanding and results in minimal learning.  The intent to “fill gaps” or “catch kids up” ironically increases the gap between struggling students and more independent learners.  Numerous studies have confirmed what Hoffer (1992) found: “Comparing the achievement growth of non-grouped students and high- and low-group students shows that high-group placement generally has a weak positive effect while low-group placement has a stronger negative effect. Ability grouping thus appears to benefit advanced students, to harm slower students.

The original conversation I had about Entrance Tickets illustrated a common issue we have.  We notice that there are students in our rooms who come into class in very different places in their understanding of a given topic.  We want to make sure that we provide things that our students will be successful with… However, this individualization of instruction does the exact opposite of what differentiated instruction intends to do.  Differentiated instruction in a mathematics class is realized when we provide experiences for our students where everyone is learning what they need to learn and can demonstrate this learning in different ways.  The assumption, however, is that WE are the ones that should be determining who is learning what and how much.  This just doesn’t make sense to me!  Instead of using entrance tickets, we ended up deciding to use this problem from Van de Walle so we could reach students no matter where they were in their understanding.  Instead of a test to determine who is allowed to learn what, we allowed every student to learn!  This needs to be a focus!

If we are ever going to help all of our students learn mathematics and believe that they are capable of thinking mathematically, then we need to provide learning experiences that ALL of our students can participate in.  These experiences need to:

• Have multiple entry points for students to access the mathematics
• Provide challenge for all students (be Problem-Based)
• Allow students to actively make sense of the mathematics through mathematical reasoning
• Allow students opportunities to students to express their understanding in different ways or reach an understanding via different strategies

Let’s avoid doing things that narrow our students’ learning like using entrance tickets to target instruction!  Let’s commit to a view of differentiated instruction where our students are the ones who are differentiating themselves (because the tasks allowed for opportunities to do things differently)!  Let’s continue to get better at leveraging students’ thinking in our classrooms to help those who are struggling!  Let’s believe that all of our students can learn!

#### I want to leave you with a few reflective questions:

• Why might conversations about entrance tickets and other ways to determine students ability be more common today?  We need to use our students’ thinking to guide our instruction, but other than entrance cards, how can we do this in ways that actually help those who are struggling?
• Is a push for data-driven instruction fueling this type of decision making?  If so, who is asking for the data?  Are there other sources of data that you can be gathering that are healthier for you and your students?
• If you’ve ever used entrance tickets or diagnostics, followed by ability groups, how did those on the bottom group feel?  Do you see the same students regularly in the bottom group?  Do you see a widening gap between those dependent on you and those who are more independent?
• Where do you look for learning experiences that offer this kind of differentiated instruction?  Is it working for the students in your class that are struggling?

I encourage you to continue to think about what it means to Differentiate your Instruction.  Here are a few pieces that might help:

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

## Pick a Quote

Seems to me that many schools and districts are asking questions about assessment in mathematics.  So, I thought I would share a few quotes that might get you to think and reflect on your views about what it means to assess, why there might be a focus on assessment, and what our goals and ideals might look like.  I want you to take a look at the following quotes.  Pick 1 or 2 that stands out to you:

A few things to reflect on as you think about the quotes above:

• Which quotes caught your eye?  Did you pick one(s) that confirm things you already believe or perhaps ones that you hadn’t spent much time thinking about before?
• Some of the above quotes speak to “assessment” while others speak to evaluation practices.  Do you know the difference?
• Take a look again at the list of quotes and find one that challenges your thinking.  I’ve probably written about the topic somewhere.  Take a look in the Links to read more about that topic.
• Why do you think so many discuss assessment as a focus in mathematics?  Maybe Linda Gojak’s article Are We Obsessed with Assessment? might provide some ideas.
• Instead of talking in generalities about topics like assessment, maybe we need to start thinking about better questions to ask, or thinking deeper about what is mathematically important, or understanding how mathematics develops!