The Same… or Different?

For many math teachers, the single most difficult issue they face on a daily basis is how to meet the needs of so many students that vary greatly in terms of what they currently know, what they can do, their motivation, their personalities…  While there are many strategies to help here, most of the strategies used seem to lean in one of two directions:

  1. Build knowledge together as a group; or
  2. Provide individualized instruction based on where students currently are

Let’s take a closer look at each of these beliefs:

Those that believe the answer is providing all students with same tasks and experiences often do so because of their focus on their curriculum standards.  They believe the teacher’s role is to provide their students with tasks and experiences that will help all of their students learn the material.  There are a few potential issues with this approach though (i.e., what to do with students who are struggling, timing the lesson when some students might take much more time than others…).

On the other hand, others believe that the best answer is individualized instruction.  They believe that students are in different places in their understand and because of this, the teacher’s role is to continually evaluate students and provide them with opportunities to learn that are “just right” based on those evaluations.  It is quite possible that students in these classrooms are doing very different tasks or possibly the same piece of learning, but completely different versions depending on each student’s ability.  There are a few difficulties with this approach though (i.e., making sure all students are doing the right tasks, constantly figuring out various tasks each day, the teacher dividing their time between various different groups…).

 


There are two seemingly opposite educational ideals that some might see as competing when we consider the two approaches above:  Differentiated Instruction and Complexity Science.  However, I’m actually not sure they are that different at all!

 

For instance, the term “differentiated instruction” in relation to mathematics can look like different things in different rooms.  Rooms that are more traditional or “teacher centered” (let’s call it a “Skills Approach” to teaching) will likely sort students by ability and give different things to different students.

teaching approaches touched up.png
From Prime Leadership kit
If the focus is on mastery of basic skills, and memorization of facts/procedures… it only makes sense to do Differentiated Instruction this way.  DI becomes more like “modifications” in these classrooms (giving different students different work).  The problem is, that everyone in the class not on an IEP needs to be doing the current grade’s curriculum.  Really though, this isn’t differentiated instruction at all… it is “individualized instruction”.  Take a look again at the Monograph: Differentiating Mathematics Instruction.

Differentiated instruction is different than this.  Instead of US giving different things to different students, a student-centered way of making this make sense is to provide our students with tasks that will allow ALL of our students have success.  By understanding Trajectories/Continuum/Landscapes of learning (See Cathy Fosnot for a fractions Landscape), and by providing OPEN problems and Parallel Tasks, we can move to a more conceptual/Constructivist model of learning!

Think about Writing for a moment.  We are really good at providing Differentiated Instruction in Writing.  We start by giving a prompt that allows everyone to be interested in the topic, students then write, we then provide feedback, and students continue to improve!  This is how math class can be when we start with problems and investigations that allow students to construct their own understanding with others!


The other theory at play here is Complexity Science.  This theory suggest that the best way for us to manage the needs of individual students is to focus on the learning of the class.

Complexity1.jpg
What Complexity Science Tells us about Teaching and Learning

The whole article is linked here if you are interested.  But basically, it outlines a few principles to help us see how being less prescriptive in our teaching, and being more purposeful in our awareness of the learning that is actually happening in our classrooms  will help us improve the learning in our classrooms.  Complexity Science tells us to think about how to build SHARED UNDERSTANDING as a group through SHARED EXPERIENCES.  Ideally we should start any new concept with problem solving opportunities so we can have the entire group learn WITH and FROM each other.  Then we should continue to provide more experiences for the group that will build on these experiences.


Helping all of the students in a mixed ability classroom thrive isn’t about students having choice to do DIFFERENT THINGS all of the time, nor is it about US choosing the learning for them… it should often be about students all doing the SAME THING in DIFFERENT WAYS.  When we share our differences, we learn FROM and WITH each other.  Learning in the math classroom should be about providing rich learning experiences, where the students are doing the thinking/problem solving.  Of course there are opportunities for students to consolidate and practice their learning independently, but that isn’t where we start.  We need to start with the ideas from our students.  We need to have SHARED EXPERIENCES (rich problems) for us to all learn from.


 

As always, I leave you with a few questions for you to consider:

  • How do you make sure all of your students are learning?
  • Who makes the decisions about the difficulty or complexity of the work students are doing?
  • Are your students learning from each other?  How can you capitalize on various students’ strengths and ideas so your students can learn WITH and FROM each other?
  • How can we continue to help our students make choices about what they learn and how they demonstrate their understanding?
  • Do you see the relationship between Differentiated Instruction and the development of mathematical reasoning / creative thinking?  How can we help our students see mathematics as a subject where reasoning is the primary goal?
  • How can we foster playful experience for our students to learn important mathematics and effectively help all of our students develop at the same time?
  • What is the same for your students?  What’s different?

I’d love to continue the conversation.  Write a response, or send me a message on Twitter (@markchubb3).

The smallest decisions have the biggest impact!

In my role, I have the advantage of seeing many great teachers honing and refining their craft, all to provide the best possible experiences for their students. The dedication and professionalism that the teachers I work with continue to demonstrate is what keeps me going in my role!

One particularly interesting benefit I have is when I can be part of the same lesson multiple times with different teachers.  When I am part of the same lesson several times I have come to notice the differences in the small decisions we make.  It is here in these small decisions that have the biggest impact on the learning in our classrooms. For instance, in any given lesson:

There are so many little decisions we make (linked above are posts discussing several of the decisions).  However, I want to discuss a topic today that isn’t often thought about: Scaffolding.


For the past few months, the teachers / instructional coaches taking my Primary/Junior Mathematics additional qualifications course have been leading lessons. Each of the lessons follow the 3-part lesson format, are designed to help us “spatialize” the curriculum (allow all of us to experience the content in our curriculum via visuals / representations / manipulatives), and have a specific focus on the consolidation phase of the lesson (closing). After each lesson is completed I often lead the group in a discussion either about the content that we experienced together, or the decisions that the leader choose. Below is a brief description of the discussion we had after one particular lesson.


First of all, however, let me share with you a brief overview of how the lesson progressed:

  1. As a warm up we were asked to figure out how many unique ways you can arrange 4 cubes.
  2. We did a quick gallery walk around the room to see others’ constructed figures.
  3. We shared and discussed the possible unique ways and debated objects that might be rotations of other figures, and those that are reflections (take a look at the 8 figures below).
  4. The 3 pages of problems were given to all (see below).  Everyone had time to work independently, but sharing happened naturally at our tables.
  5. The lesson close included discussions about how we tackled the problems.  Strategies, frustrations, what we noticed about the images… were shared.

Here are the worksheets we were using so you can follow along with the learning (also available online Guide to Effective Instruction: Geometry 4-6, pages 191-212):

img_3608

img_3609

img_3610

img_3611


While the teacher leader made the decision to hand out all 9 problems (3 per sheet) at the same time, I think some teachers might make a different decision. Some might decide to take a more scaffolded approach. Think about it, which would you likely do:

  1. Hand out all 9 problems, move around the room and observe, offer focusing questions as needed, end in a lesson close; or
  2. Ask students to do problem 1, help those that need it, take up problem 1, ask students to do problem 2, help those that need it, take up problem 2…

This decision, while seemingly simple, tells our students a lot about your beliefs about how learning happens, and what you value.

So as a group of teachers we discussed the benefits and drawbacks of both approaches. Here are our thoughts:

The more scaffolded approach (option 2) is likely easier for us. We can control the class easier and make sure that all students are following along. Some felt like it might be easier for us to make sure that we didn’t miss any of our struggling students. However, many worried that this approach might inhibit those ready to move on, and frustrate those that can’t solve it quickly. Some felt like having everyone work at the same pace wasn’t respectful of the differences we have in our rooms.

On the other hand, some felt that handing out all 9 puzzles might be intimidating for a few students at first. However, others believed that observing and questioning students might be easier because there would be no time pressure. They felt like we could spend more time with students watching how they tackle the problems.

Personally, I think our discussion deals with some key pieces of our beliefs:

  • Do we value struggle?  Are we comfortable letting students productively keep trying?
  • Are we considering what is best for us to manage things, or best for our students to learn (teacher-centered vs student-centered)?
  • What is most helpful for those that struggle with a task?  Lots of scaffolding, telling and showing?  Or lots of time to think, then offer assistance if needed?

In reality, neither of these ways will likely actually happen though. Those who start off doing one problem at a time, will likely see disengagement and more behaviour problems because so many will be waiting. When this happens, the teacher will likely let everyone go at their own pace anyway.

Similarly, if the teacher starts off letting everyone go ahead at their own pace, they might come across several of the same issues and feel like they need to stop the class to discuss something.

While both groups will likely converge, the initial decision still matters a lot.  Assuming the amount and types of scaffolding seems like the wrong move because there is no way to know how much scaffolding might be needed. So many teachers default by making sure they provide as much scaffolding as possible  however, when we over-scaffold, we purposely attempt to remove any sense of struggle from our students, and when we do this, we remove our students’ need to think!  When we start by allowing our students to think and explore, we are telling our students that their thoughts matter, that we believe they can think, that mathematics is about making sense of things, not following along!

So I leave you with a few thoughts:

  • Do your students expect you to scaffold everything?  Do they give up easily?  How can we change this?
  • When given an assignment do you quickly see a number of hands raise looking for help?  Why is this?  How can we change this?
  • At what point do you offer any help?  What does this “help” look like?  Does it still allow your students opportunities to think and make sense of things?

When we scaffold everything, we might be helping them with today’s work, but we are robbing them of the opportunity of thinking. When we do this, we rob them of the enjoyment and beauty of mathematics itself!

How do you give feedback?

There seems to be a lot of research telling us how important feedback is to student performance, however, there’s little discussion about how we give this feedback and what the feedback actually looks like in mathematics. To start with, here are a few important points research says about feedback:

  • The timing of feedback is really important
  • The recipient of the feedback needs to do more work than the person giving the feedback
  • Students need opportunities to do something with the feedback
  • Feedback is not the same thing as giving advice

I will talk about each of these toward the end of this post.  First, I want to explain a piece about feedback that isn’t mentioned enough…  Providing students with feedback positions us and our students as learners.  Think about it for a second, when we “mark” things our attention starts with what students get right, but our attention moves quickly to trying to spot errors. Basically, when marking, we are looking for deficits. On the other hand, when we are giving feedback, we instead look for our students’ actual thinking.  We notice things as almost right, we notice misconceptions or overgeneralization…then think about how to help our students move forward.  When giving feedback, we are looking for our students strengths and readiness.  Asset thinking is FAR more productive, FAR more healthy, FAR more meaningful than grades!


Feedback Doesn’t Just Happen at the End!

Let’s take an example of a lesson involving creating, identifying, and extending linear growing patterns.  This is the 4th day in a series of lessons from a wonderful resource called From Patterns to Algebra.  Today, the students here were asked to create their own design that follows the pattern given to them on their card.

IMG_1395
Their pattern card read: Output number = Input number x3+2
IMG_1350
Their pattern card read:  Output number = Input number x7
IMG_1347
Their pattern card read:  Output number = Input number x4

 

IMG_1175
Their pattern card read:  Output number = Input number x3+1
IMG_1355
Their pattern card read:  Output number = Input number x8+2
IMG_1361
Their pattern card read: Output number = Input number x5+2

Once students made their designs, they were instructed to place their card upside down on their desk, and to circulate around the room quietly looking at others’ patterns.  Once they believed they knew the “pattern rule” they were allowed to check to see if they were correct by flipping over the card.

After several minutes of quiet thinking, and rotating around the room, the teacher stopped everyone and led the class in a lesson close that involved rich discussions about specific samples around the room.  Here is a brief explanation of this close:

Teacher:  Everyone think of a pattern that was really easy to tell what the pattern rule was.  Everyone point to one.  (Class walks over to the last picture above – picture 6).  What makes this pattern easy for others to recognize the pattern rule?  (Students respond and engage in dialogue about the shapes, colours, orientation, groupings…).

Teacher:  Can anyone tell the class what the 10th position would look like?  Turn to your partner and describe what you would see.  (Students share with neighbor, then with the class)

Teacher:  Think of one of the patterns around the room that might have been more difficult for you to figure out.  Point to one you want to talk about with the class.  (Students point to many different ones around the room.  The class visits several and engages in discussions about each.  Students notice some patterns are harder to count… some patterns follow the right number of tiles – but don’t follow a geometric pattern, some patterns don’t reflect the pattern listed on the card.  Each of these noticings are given time to discuss, in an environment that is about learning… not producing.  Everyone understands that mistakes are part of the learning process here and are eager to take their new knowledge and apply it.

The teacher then asks students to go back to their desks and gives each student a new card.  The instructions are similar, except, now she asks students to make it in a way that will help others recognize the patterns easily.

The process of creating, walking around the room silently, then discussing happens a second time.

To end the class, the teacher hands out an exit card asking students to articulate why some patterns are easier than others to recognize.  Examples were expected from students.


At the beginning of this post I shared 4 points from research about feedback.  I want to briefly talk about each:

The timing of feedback is really important

Feedback is best when it happens during the learning.  While I can see when it would be appropriate for us to collect items and write feedback for students, having the feedback happen in-the-moment is ideal!   Dan Meyer reminds us that instant feedback isn’t ideal.  Students need enough time to think about what they did right/wrong… what needs to be corrected.  On the other hand, having students submit items, then us giving them back a week later isn’t ideal either!  Having this time to think and receive feedback DURING the learning experience is ideal.  In the example above, feedback happened several times:

  1. As students walked around looking at patterns.  After they thought they knew the pattern, they peeked at the card.
  2. As students discuss several samples they are given time to give each other feedback about which patterns make sense… which ones visually represented the numeric value… which patterns could help us predict future visuals/values
  3. Afterward once the teacher collected the exit cards.

The recipient of the feedback needs to do more work than the person giving the feedback

Often we as teachers spend too much time writing detailed notes offering pieces of wisdom.  While this is often helpful, it isn’t a feasible thing to do on a daily basis. In fact, us doing all of the thinking doesn’t equate to students improving!  In the example above, students were expected to notice patterns that made sense to them, they engaged in conversations about the patterns.  Each student had to recognize how to make their pattern better because of the conversations.  The work of the feedback belonged, for the most part, within each student.

Students need opportunities to do something with the feedback

Once students receive feedback, they need to use that feedback to continue to improve.  In the above example, the students had an opportunity to create new patterns after the discussions.  After viewing the 2nd creations and seeing the exit cards, verbal or written feedback could be given to those that would benefit from it.


Feedback is not the same thing as giving advice

This last piece is an interesting one.  Feedback, by definition, is about seeing how well you have come to achieving your goal.  It is about what you did, not about what you need to do next.  “I noticed that you have switched the multiplicative and additive pieces in each of your patterns” is feedback.  “I am not sure what the next position would look like because I don’t see a pattern here” is feedback.  “The additive parts need to remain constant in each position” is not feedback… it is advice (or feedforward).

In the example above, the discussions allowed for ample time for feedback to happen.  If students were still struggling, it is appropriate to give direct advice.  But I’m not sure students would have understood any advice, or retained WHY they needed to take advice if we offered it too soon.


So I leave you with some final questions for you:

  • When do your students receive feedback?  How often?
  • Who gives your students their feedback?
  • Is it written?  Or verbal?
  • Which of these do you see as the most practical?  Meaningful for your students?  Productive?
  • How do you make time for feedback?
  • Who is doing the majority of the work… the person giving or the person receiving the feedback?
  • Do your students engage in tasks that allow for multiple opportunities for feedback to happen naturally?

PS.   Did you notice which of the students’ examples above had made an error.  What feedback would you give?  How would they receive this feedback?

 

 

 

An Unsolved Problem your Students Should Attempt

There are several great unsolved math problems that are perfect for elementary students to explore.  One of my favourites is the palindrome sums problem.
In case you aren’t familiar, a palindrome is a word, phrase, sentence or number that reads the same forward and backward.


The problem itself comes out of this conjecture:

If you take any number and add it to its inverse (numbers reversed), it will eventually become a palindrome.

Let’s take a look at the numbers 12, 46 and 95:

Palindrome adding1


Palindrome adding2


Palindrome adding3


As you can see with the above examples, some numbers can become palindromes with 1 simple addition, like the number 12.  12 + 21 = 33.  Can you think of others that should take 1 step?  How did you know?

Other numbers when added to their inverse will not immediately become a palindrome, but by continuing the process, will eventually, like the numbers 46 and 95.  Which numbers do you think will take more than 1 step?


After going through a few examples with students about the process of creating palindromes, ask your students to attempt to see if the conjecture is true (If you take any number and add it to its inverse (numbers reversed), it will eventually become a palindrome).  Have them find out if each number from 0-99 will eventually become a palindrome. Ask students if they need to find the answer for each number?  Encourage them to make their own conjectures so they don’t need to do all of the calculations for each number.


Mathematically proficient students look closely to discern a pattern or structure. They notice if calculations are repeated, and look both for general methods and for shortcuts. (SMP 7)

Some students will notice:

  • Some numbers will already be a palindrome
  • If they have figured out 12 + 21… they will know 21 + 12.  So they don’t have to do all of the calculations.  Nearly half of the work will have already been completed.
  • A pattern emerging in their answers … 44, 55, 66, 77, 88, 99, 121… and see this pattern regularly (well, almost)
  • A pattern about when numbers will have 99 as a palindrome, or 121… 18+81 = 27+72 = 36+63…

Thinking about our decisions:
  • What is the goal of this lesson?  (Practice with addition?  Looking for patterns?  Perseverance?  Making conjectures? …)
  • Do we share some of the conjectures students are making during the time when students are working, or later in the closing of the lesson?  
  • How will my students record their work?  Keep track of their answers?  Do I provide a 0-99 chart or ask them to keep track somehow?
  • Will students work independently / in pairs / in small groups?  Why?
  • Do I allow calculators?  Why or why not?  (think back to your goal)
  • How will I share the conjectures or patterns noticed with the class?
  • Are my students gaining practice DOING (calculations) or THINKING (noticing patterns and making conjectures)?  Which do you value?

The smallest of decisions can make the biggest of impacts for our students!  


So, at the beginning of this post I shared with you that this problem is currently unsolved.  While it is true that the vast majority of numbers have been proven to easily become palindromes, there are some numbers that require many steps (89 and 98 require 24 steps), and others that have never been proven to either work or not work (198 is the smallest number never proven either way).


Some final thoughts about this problem…

After using this problem with many different students I have noticed that many start to see that mathematics can be a much more intellectually interesting subject than they had previously experienced.  This problem asks students to notice things, make conjectures, try to prove their conjectures and be able to communicate their conjectures with others…  The problem provides students with the opportunity to both think and do.  It offers students from various ability levels access to the problem (low floor), and many different avenues to challenge those ready for it (high ceiling).  It tells students that math is still a living, growing subject… that all of the problems have not yet been figured out!  And probably the most important for me, it sends students messages about what it means to really do mathematics!

 

palindrome2
Taken from Marilyn Burns’ 50 Problem Solving Lessons resource

 

Focus on Relational Understanding

Forty years ago, Richard Skemp wrote one of the most important articles, in my opinion, about mathematics, and the teaching and learning of mathematics called Relational Understanding and Instrumental Understanding.  If you haven’t already read the article, I think you need to add this to your summer reading (It’s linked above).

Skemp quite nicely illustrates the fact that many of us have completely different, even contradictory definitions, of the term “understanding”.   Here are the 2 opposing definitions of the word “understanding”:

“Instrumental understanding” can be thought of as knowing the rules and procedures without understanding why those rules or procedures work. Students who have been taught instrumentally can perform calculations, apply procedures… but do not necessarily understand the mathematics behind the rules or procedures.

Instrumental2.png

“Relational understanding”, on the other hand, can be thought of as understanding how and why the rules and procedures work.  Students who are taught relationally are more likely to remember the procedures because they have truly understood why they work, they are more likely to retain their understanding longer, more likely to connect new learning with previous learning, and they are less likely to make careless mistakes.

Relational2.png

Think of the two types of understanding like this:

 

Shared by David Wees

Students who are taught instrumentally come to see mathematics as isolated pieces of knowledge. They are expected to remember procedures for each and every concept/skill.  Each new skill requires a new set of procedures.  However, those who are taught relationally make connections between and within concepts and skills.  Those with a relational understanding can learn new concepts easier, retain previous concepts, and are able to deviate from formulas/rules given different problems easier because of the connections they have made.

 

While it might seem obvious that relational understanding is best, it requires us to understand the mathematics in ways that we were never taught in order for us to provide the best experiences for our students. It also means that we need to start with our students’ current understandings instead of starting with the rules and procedures.

Skemp articulates how much of an issue this really is in our educational system when he explains the different types of mismatches that can occur between how students are taught, and how students learn.  Take a look:

Instrumental vs Relational

Notice the top right quadrant for a second.  If a child wants to learn instrumentally (they only want to know the steps/rules to solve today’s problem) and the teacher instead offers tasks/problems that asks the child to think or reason mathematically, the student will likely be frustrated for the short term.  You might see students that lack perseverance, or are eager for assistance because they are not used to thinking for themselves.  However, as their learning progresses, they will come to make sense of their mathematics and their initial frustration will fade.

On the other hand, if a teacher teaches instrumentally but a child wants to learn relationally (they want/need to understand why procedures work) a more serious mismatch will exist.  Students who want to make sense of the concepts they are learning, but are not given the time and conditions to experience mathematics in this way will come to believe that they are not good at mathematics.  These students soon disassociate with mathematics and will stop taking math classes as soon as they can.  These students view themselves as “not a math person” because their experiences have not helped them make sense of the mathematics they were learning.

While the first mismatch might seem frustrating for us as teachers, the frustration is short lived. On the other hand, the second mismatch has life-long consequences!


I’ve been thinking about the various initiatives/ professional development opportunities… that I have been part of, or have been available online or through print that might help us think about how to move from an instrumental understanding to a relational understanding of mathematics.  Here are a few I want to share with you:

Phil Daro’s Against Answer Getting video highlights a few instrumental practices that might be common in some schools.  Below is the “Butterfly” method of adding fractions he shares as an “answer getting” strategy.  While following these simple steps might help our students get the answer to this question, Phil points out that these students will be unable to solve an addition problem with 3 fractions.  These students “understand” how to get the answer, but in no way understand how the answer relates to addends.

Daro - Butterfly.jpg

On the other hand, teachers who teach relationally provide their students with contexts, models (i.e, number lines, arrays…), manipulatives (i.e., cuisenaire rods, pattern blocks…) and visuals to help their students develop a relational understanding.  If you are interested in learning more about helping your students develop a relational understanding of fractions, take a look at a few resources that will help:


Tina Cardone and a group of math teachers across Twitter (part of the #MTBoS) created a document called Nix The Tricks that points out several instrumental “tricks” that do not lead to relational understanding.  For example, “turtle multiplication” is an instrumental strategy that will not help our students understand the mathematics that is happening.  Students can draw a collar and place an egg below, but in no way will this help with future concepts!Turtle mult.jpg

Teachers focused on relational understanding again use representations that allow their students to visualize what is happening.  Connections between representations, strategies and the big ideas behind multiplication are developed over time.

Take a look at some wonderful resources that promote a relational understanding of multiplication:

Each of the above are developmental in nature, they focus on representations and connections.


So how do we make these shifts?  Here are a few of my thoughts:

  1. Notice instrumental teaching practices.
  2. Learn more about how to move from instrumental to relational teaching.
  3. Align assessment practices to expect relational understanding.

Goal 1 – Notice instrumental teaching practices.

Many of these are easy to spot.  Here is a small sample from Pinterest:

 

The rules/procedures shared here ask students to DO without understanding.  The issue is that there are actually countless instrumental practices out there, so my goal is actually much harder than it seems.  Think about something you teach that involves rules or procedures.  How can you help your students develop a relational understanding of this concept?


Goal 2 – Learn more about how to move from instrumental to relational teaching.

I don’t think this is something we can do on our own.  We need the help of professional resources (Marian Small, Van de Walle, Fosnot, and countless others have helped produce resources that are classroom ready, yet help us to see mathematics in ways that we probably didn’t experience as students), mathematics coaches, and the insights of teachers across the world (there is a wonderful community on Twitter waiting to share and learn with you).

I strongly encourage you to look at chapter 1 of Van de Walle’s Teaching Student Centered Mathematics where it will give a clearer view of relational understanding and how to teach so our students can learn relationally.

However we are learning, we need to be able to make new connections, see the concepts in different ways in order for us to know how to provide relational teaching for our students.


Goal 3 – Align assessment practices to expect relational understanding.

This is something I hope to continue to blog about.  If we want our students to have a relational understanding, we need to be clear about what we expect our students to be able to do and understand.  Looking at developmental landscapes, continuums and trajectories will help here.  Below is Cathy Fosnot’s landscape of learning for multiplication and division.  While this might look complicated, there are many different representations, strategies and big ideas that our students need to experience to gain a relational understanding.

Fosnot landscape2
Investigating Multiplication and Division Grades 3-5

Asking questions or problems that expect relational understanding is key as well.  Take a look at one of Marian Small’s slideshows below.  Toward the end of each she shares the difference between questions that focus on knowledge and questions that focus on understanding.


I hope whatever your professional learning looks like this year (at school, on Twitter, professional reading…) there is a focus on helping build your relational understanding of the concepts you teach, and a better understanding of how to build a relational understanding for your students.  This will continue to be my priority this year!