Reasoning & Proving

This week I had the pleasure to see Dan Meyer, Cathy Fosnot and Graham Fletcher at OAME’s Leadership conference.

leadership oame

Each of the sessions were inspiring and informative… but halfway through the conference I noticed a common message that the first 2 keynote speakers were suggesting:

Capture

Dan Meyer showed us several examples of what mathematical surprise looks like in mathematics class (so students will be interested in making sense of what they are learning, and to get our students really thinking), while Cathy Fosnot shared with us how important it is for students to be puzzled in the process of developing as young mathematicians.  Both messages revolved around what I would consider the most important Process Expectation in the Ontario curriculum – Reasoning and Proving.


Reasoning and Proving

While some see Reasoning and Proving as being about how well an answer is constructed for a given problem – how well communicated/justified a solution is – this is not at all how I see it.  Reasoning is about sense-making… it’s about generalizing why things work… it’s about knowing if something will always, sometimes or never be true…it is about the “that’s why it works” kinds of experiences we want our students engaged in.  Reasoning is really what mathematics is all about.  It’s the pursuit of trying to help our students think mathematically (hence the name of my blog site).


A Non-Example of Reasoning and Proving

In the Ontario curriculum, students in grade 7 are expected to be able to:

  • identify, through investigation, the minimum side and angle information (i.e.,side-side-side; side-angle-side; angle-side-angle) needed to describe a unique triangle

Many textbooks take an expectation like this and remove the need for reasoning.  Take a look:

triangle congruency

As you can see, the textbook here shares that there are 3 “conditions for congruence”.  It shares the objective at the top of the page.  Really there is nothing left to figure out, just a few questions to complete.  You might also notice, that the phrase “explain your reasoning” is used here… but isn’t used in the sense-making way suggested earlier… it is used as a synonym for “show your work”.  This isn’t reasoning!  And there is no “identifying through investigation” here at all – as the verbs in our expectation indicate!


A Example of Reasoning and Proving

Instead of starting with a description of which sets of information are possible minimal information for triangle congruence, we started with this prompt:

Triangles 2

Given a few minutes, each student created their own triangles, measured the side lengths and angles, then thought of which 3 pieces of information (out of the 6 measurements they measured) they would share.  We noticed that each successful student either shared 2 angles, with a side length in between the angles (ASA), or 2 side lengths with the angle in between the sides (SAS).  We could have let the lesson end there, but we decided to ask if any of the other possible sets of 3 pieces of information could work:

triangles 3

While most textbooks share that there are 3 possible sets of minimal information, 2 of which our students easily figured out, we wondered if any of the other sets listed above will be enough information to create a unique triangle.  Asking the original question didn’t offer puzzlement or surprise because everyone answered the problem without much struggle.  As math teachers we might be sure about ASA, SAS and SSS, but I want you to try the other possible pieces of information yourself:

Create triangle ABC where AB=8cm, BC=6cm, ∠BCA=60°

Create triangle FGH where ∠FGH=45°, ∠GHF=100°, HF=12cm

Create triangle JKL where ∠JKL=30°, ∠KLJ=70°, ∠LJK=80°

If you were given the information above, could you guarantee that everyone would create the exact same triangles?  What if I suggested that if you were to provide ANY 4 pieces of information, you would definitely be able to create a unique triangle… would that be true?  Is it possible to supply only 2 pieces of information and have someone create a unique triangle?  You might be surprised here… but that requires you to do the math yourself:)


Final Thoughts

Graham Fletcher in his closing remarks asked us a few important questions:

Graham Fletcher
  • Are you the kind or teacher who teaches the content, then offers problems (like the textbook page in the beginning)?  Or are you the kind of teacher who uses a problem to help your students learn?
  • How are you using surprise or puzzlement in your classroom?  Where do you look for ideas?
  • If you find yourself covering information, instead of helping your students learn to think mathematically, you might want to take a look at resources that aim to help you teach THROUGH problem solving (I got the problem used here in Marian Small’s new Open Questions resource).  Where else might you look?
  • What does Day 1 look like when learning a new concept?
  • Do you see Reasoning and Proving as a way to have students to show their work (like the textbook might suggest) or do you see Reasoning and Proving as a process of sense-making (as Marian Small shares)?
  • Do your students experience moments of cognitive disequilibrium… followed by time for them to struggle independently or with a partner?  Are they regularly engaged in sense-making opportunities, sharing their thinking, debating…?
  • The example I shared here isn’t the most flashy example of surprise, but I used it purposefully because I wanted to illustrate that any topic can be turned into an opportunity for students to do the thinking.  I would love to discuss a topic that you feel students can’t reason through… Let’s think together about if it’s possible to create an experience where students can experience mathematical surprise… or puzzlement… or be engaged in sense-making…  Let’s think together about how we can make Reasoning and Proving a focus for you and your students!

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Advertisements

Reasoning and Proving

This week I had the pleasure to see Dan Meyer, Cathy Fosnot and Graham Fletcher at OAME’s Leadership conference.

leadership oame

Each of the sessions were inspiring and informative… but halfway through the conference I noticed a common message that the first 2 keynote speakers were suggesting:

Capture

Dan Meyer showed us several examples of what mathematical surprise looks like in mathematics class (so students will be interested in making sense of what they are learning), while Cathy Fosnot shared with us how important it is for students to be puzzled in the process of developing as young mathematicians.  Both messages revolved around what I would consider the most important Process Expectation in the Ontario curriculum – Reasoning and Proving.


Reasoning and Proving

While some see Reasoning and Proving as being about how well an answer is constructed for a given problem – how well communicated/justified a solution is – this is not at all how I see it.  Reasoning is about sense-making… it’s about generalizing why things work… it’s about knowing if something will always, sometimes or never be true…it is about the “that’s why it works” kinds of experiences we want our students engaged in.  Reasoning is really what mathematics is all about.  It’s the pursuit of trying to help our students think mathematically (hence the name of my blog site).


A Non-Example of Reasoning and Proving

In the Ontario curriculum, students in grade 7 are expected to be able to:

  • identify, through investigation, the minimum side and angle information (i.e.,side-side-side; side-angle-side; angle-side-angle) needed to describe a unique triangle

Many textbooks take an expectation like this and remove the need for reasoning.  Take a look:

triangle congruency

As you can see, the textbook here shares that there are 3 “conditions for congruence”.  It shares the objective at the top of the page.  Really there is nothing left to figure out, just a few questions to complete.  You might also notice, that the phrase “explain your reasoning” is used here… but isn’t used in the sense-making way suggested earlier… it is used as a synonym for “show your work”.  This isn’t reasoning!  And there is no “identifying through investigation” here at all – as the verbs in our expectation indicate!


A Example of Reasoning and Proving

Instead of starting with a description of which sets of information are possible minimal information for triangle congruence, we started with this prompt:

Triangles 2

Given a few minutes, each student created their own triangles, measured the side lengths and angles, then thought of which 3 pieces of information (out of the 6 measurements they measured) they would share.  We noticed that each successful student either shared 2 angles, with a side length in between the angles (ASA), or 2 side lengths with the angle in between the sides (SAS).  We could have let the lesson end there, but we decided to ask if any of the other possible sets of 3 pieces of information could work:

triangles 3

While most textbooks share that there are 3 possible sets of minimal information, 2 of which our students easily figured out, we wondered if any of the other sets listed above will be enough information to create a unique triangle.  Asking the original question didn’t offer puzzlement or surprise because everyone answered the problem without much struggle.  As math teachers we might be sure about ASA, SAS and SSS, but I want you to try the other possible pieces of information yourself:

Create triangle ABC where AB=8cm, BC=6cm, ∠BCA=60°

Create triangle FGH where ∠FGH=45°, ∠GHF=100°, HF=12cm

Create triangle JKL where ∠JKL=30°, ∠KLJ=70°, ∠LJK=80°

If you were given the information above, could you guarantee that everyone would create the exact same triangles?  What if I suggested that if you were to provide ANY 4 pieces of information, you would definitely be able to create a unique triangle… would that be true?  Is it possible to supply only 2 pieces of information and have someone create a unique triangle?  You might be surprised here… but that requires you to do the math yourself:)


Final Thoughts

Graham Fletcher in his closing remarks asked us a few important questions:

Graham Fletcher

  • Are you the kind or teacher who teaches the content, then offers problems (like the textbook page in the beginning)?  Or are you the kind of teacher who uses a problem to help your students learn?
  • How are you using surprise or puzzlement in your classroom?  Where do you look for ideas?
  • If you find yourself covering information, instead of helping your students learn to think mathematically, you might want to take a look at resources that aim to help you teach THROUGH problem solving (I got the problem used here in Marian Small’s new Open Questions resource).  Where else might you look?
  • What does Day 1 look like when learning a new concept?
  • Do you see Reasoning and Proving as a way to have students to show their work (like the textbook might suggest) or do you see Reasoning and Proving as a process of sense-making (as Marian Small shares)?
  • Do your students experience moments of cognitive disequilibrium… followed by time for them to struggle independently or with a partner?  Are they regularly engaged in sense-making opportunities, sharing their thinking, debating…?
  • The example I shared here isn’t the most flashy example of surprise, but I used it purposefully because I wanted to illustrate that any topic can be turned into an opportunity for students to do the thinking.  I would love to discuss a topic that you feel students can’t reason through… Let’s think together about if it’s possible to create an experience where students can experience mathematical surprise… or puzzlement… or be engaged in sense-making…  Let’s think together about how we can make Reasoning and Proving a focus for you and your students!

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Rushing for Interventions

I see students working in groups all the time…  Students working collaboratively in pairs or small groups having rich discussions as they sort shapes by specific properties, students identifying and extending their partner’s visual patterns, students playing games aimed at improving their procedural fluency, students cooperating to make sense of a low-floor/high-ceiling problem…..

When we see students actively engaged in rich mathematics activities, working collaboratively, it provides opportunities for teachers to effectively monitor student learning (notice students’ thinking, provide opportunities for rich questioning, and lead to important feedback and next steps…) and prepare the teacher for the lesson close.  Classrooms that engage in these types of cooperative learning opportunities see students actively engaged in their learning.  And more specifically, we see students who show Agency, Ownership and Identity in their mathematics learning (See TruMath‘s description on page 10).


On the other hand, some classrooms might be pushing for a different vision of what groups can look like in a mathematics classroom.  One where a teachers’ role is to continually diagnose students’ weaknesses, then place students into ability groups based on their deficits, then provide specific learning for each of these groups.  To be honest, I understand the concept of small groups that are formed for this purpose, but I think that many teachers might be rushing for these interventions too quickly.

First, let’s understand that small group interventions have come from the RTI (Response to Intervention) model.  Below is a graphic created by Karen Karp shared in Van de Walle’s Teaching Student Centered Mathematics to help explain RTI:

rti2
Response to Intervention – Teaching Student Centered Mathematics

As you can see, given a high quality mathematics program, 80-90% of students can learn successfully given the same learning experiences as everyone.  However, 5-10% of students (which likely are not always the same students) might struggle with a given topic and might need additional small-group interventions.  And an additional 1-5% might need might need even more specialized interventions at the individual level.

The RTI model assumes that we, as a group, have had several different learning experiences over several days before Tier 2 (or Tier 3) approaches are used.  This sounds much healthier than a model of instruction where students are tested on day one, and placed into fix-up groups based on their deficits, or a classroom where students are placed into homogeneous groupings that persist for extended periods of time.


Principles to Action (NCTM) suggests that what I’m talking about here is actually an equity issue!

P2A
Principles to Action

We know that students who are placed into ability groups for extended periods of time come to have their mathematical identity fixed because of how they were placed.  That is, in an attempt to help our students learn, we might be damaging their self perceptions, and therefore, their long-term educational outcomes.


Tier 1 Instruction

intervention

While I completely agree that we need to be giving attention to students who might be struggling with mathematics, I believe the first thing we need to consider is what Tier 1 instruction looks like that is aimed at making learning accessible to everyone.  Tier 1 instruction can’t simply be direct instruction lessons and whole group learning.  To make learning mathematics more accessible to a wider range of students, we need to include more low-floor/high-ceiling tasks, continue to help our students spatalize the concepts they are learning, as well as have a better understanding of developmental progressions so we are able to effectively monitor student learning so we can both know the experiences our students will need to be successful and how we should be responding to their thinking.  Let’s not underestimate how many of our students suffer from an “experience gap”, not an “achievement gap”!

If you are interested in learning more about what Tier 1 instruction can look like as a way to support a wider range of students, please take a look at one of the following:


Tier 2 Instruction

Tier 2 instruction is important.  It allows us to give additional opportunities for students to learn the things they have been learning over the past few days/weeks in a small group.  Learning in a small group with students who are currently struggling with the content they are learning can give us opportunities to better know our students’ thinking.  However, I believe some might be jumping past Tier 1 instruction (in part or completely) in an attempt to make sure that we are intervening. To be honest, this doesn’t make instructional sense to me! If we care about our content, and care about our students’ relationship with mathematics, this might be the wrong first move.

So, let’s make sure that Tier 2 instruction is:

  • Provided after several learning experiences for our students
  • Flexibly created, and easily changed based on the content being learned at the time
  • Focused on student strengths and areas of need, not just weaknesses
  • Aimed at honoring students’ agency, ownership and identity as mathematicians
  • Temporary!

If you are interested in learning more about what Tier 2 interventions can look like take a look at one of the following:


Instead of seeing mathematics as being learned every day as an approach to intervene, let’s continue to learn more about what Tier 1 instruction can look like!  Or maybe you need to hear it from John Hattie:

Or from Jo Boaler:


Final Thoughts

If you are currently in a school that uses small group instruction in mathematics, I would suggest that you reflect on a few things:

  • How do your students see themselves as mathematicians?  How might the topics of Agency, Authority and Identity relate to small group instruction?
  • What fixed mindset messaging do teachers in your building share “high kids”, “level 2 students”, “she’s one of my low students”….?  What fixed mindset messages might your students be hearing?
  • When in a learning cycle do you employ small groups?  Every day?  After several days of learning a concept?
  • How flexible are your groups?  Are they based on a wholistic leveling of your students, or based specifically on the concept they are learning this week?
  • How much time do these small groups receive?  Is it beyond regular instructional timelines, or do these groups form your Tier 1 instructional time?
  • If Karp/Van de Walle suggests that 80-90% of students can be successful in Tier 1, how does this match what you are seeing?  Is there a need to learn more about how Tier 1 approaches can meet the needs of this many students?
  • What are the rest of your students doing when you are working with a small group?  Is it as mathematically rich as the few you’re working with in front of you?
  • Do you believe that all of your students are capable to learn mathematics and to think mathematically?

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

The role of “practice” in mathematics class

A few weeks ago a NYTimes published an article titled, Make Your Daughter Practice Math. She’ll Thank You Later, an opinion piece that, basically, asserts that girls would benefit from “extra required practice”.  I took a few minutes to look through the comments (which there are over 600) and noticed a polarizing set of personal comments related to what has worked or hasn’t worked for each person, or their own children.  Some sharing how practicing was an essential component for making them/their kids successful at mathematics, and others discussing stories related to frustration, humiliation and the need for children to enjoy and be interested in the subject.

Instead of picking apart the article and sharing the various issues I have with it (like the notion of “extra practice” should be given based on gender), or simply stating my own opinions, I think it would be far more productive to consider why practice might be important and specifically consider some key elements of what might make practice beneficial to more students.


To many, the term “practice” brings about childhood memories of completing pages of repeated random questions, or drills sheets where the same algorithm is used over and over again.  Students who successfully completed the first few questions typically had no issues completing each and every question.  For those who were successful, the belief is that the repetition helped.  For those who were less successful, the belief is that repeating an algorithm that didn’t make sense in the first place wasn’t helpful…  even if they can get an answer, they might still not understand (*Defining 2 opposing definitions of “understanding” here).

“Practice” for both of the views above is often thought of as rote tasks that are devoid of thinking, choices or sense making.  Before I share with you an alternative view of practice, I’d like to first consider how we have tackled “practice” for students who are developing as readers.

If we were to consider reading instruction for a moment, everyone would agree that it would be important to practice reading, however, most of us wouldn’t have thoughts of reading pages of random words on a page, we would likely think about picture books.  Books offer many important factors for young readers.  Pictures might help give clues to difficult words, the storyline offers interest and motivation to continue, and the messages within the book might bring about rich discussions related to the purpose of the book.  This kind of practice is both encourages students to continue reading, and helps them continue to get better at the same time.  However, this is very different from what we view as math “practice”.

In Dan Finkel’s Ted Talk (Five Principles of Extraordinary Math Teaching) he has attempted to help teachers and parents see the equivalent kind of practice for mathematics:

Finkel Quote


Below is a chart explaining the role of practice as it relates to what Dan Finkel calls play:

practice2

Take a look at the “Process” row for a moment.  Here you can see the difference between a repetitive drill kind of practice and the “playful experiences” kind of  practice Dan had called for.  Let’s take a quick example of how practice can be playful.


Students learning to add 2-digit numbers were asked to “practice” their understanding of addition by playing a game called “How Close to 100?”.  The rules:

  • Roll 2 dice to create a 2-digit number (your choice of 41 or 14)
  • Use base-10 materials as appropriate
  • Try to get as close to 100 as possible
  • 4th role you are allowed eliminating any 1 number IF you want

close to 100b

What choice would you make???  Some students might want to keep all 4 roles and use the 14 to get close to 100, while other students might take the 41 and try to eliminate one of the roles to see if they can get closer.


When practice involves active thinking and reasoning, our students get the practice they need and the motivation to sustain learning!  When practice allows students to gain a deeper understanding (in this case the visual of the base-10 materials) or make connections between concepts, our students are doing more than passive rule following – they are engaging in thinking mathematically!


In the end, we need to take greater care in making sure that the experiences we provide our students are aimed at the 5 strands shown below:

strands of mathematical proficency.png
Adding It Up: Helping Children Learn Mathematics


You might also be interested in thinking about how we might practice Geometrical terms/properties, or spatial reasoning, or exponents, or Bisectors


So I will leave you with some final thoughts:

  • What does “practice” look like in your classroom?  Does it involve thinking or decisions?  Would it be more engaging for your students to make practice involve more thinking?
  • How does this topic relate to the topic of “engagement”?  Is engagement about making tasks more fun or about making tasks require more thought?  Which view of engagement do you and your students subscribe to?
  • What does practice look like for your students outside of school?  Is there a place for practice at home?
  • Which of the 5 strands (shown above) are regularly present in your “practice” activities?  Are there strands you would like to make sure are embedded more regularly?

I’d love to continue the conversation about “practicing” mathematics.  Leave a comment here or on Twitter @MarkChubb3

Noticing and Wondering: A powerful tool for assessment

Last week I had the privilege of presenting with Nehlan Binfield at OAME on the topic of assessment in mathematics.  We aimed to position assessment as both a crucial aspect of teaching, yet simplify what it means for us to assess effectively and how we might use our assessments to help our students and class learn.  If interested, here is an abreviated version of our presentation:

b2

We started off by running through a Notice and Wonder with the group.  Given the image above, we noticed colours, sizes, patterns, symmetries (line symmetry and rotational symmetry), some pieces that looked like “trees” and other pieces that looked like “trees without stumps”…

Followed by us wondering about how many this image would be worth if a white was equal to 1, and what the next term in a pattern would look like if this was part of a growing pattern…

b3

We didn’t have time, but if you are interested you can see the whole exchange of how the images were originally created in Daniel Finkel’s quick video.

We then continued down the path of noticing and wondering about the image above.  After several minutes, we had come together to really understand the strategy called Notice and Wonder:

b4

As well as taking a quick look at how we can record our students’ thinking:

b5
Shared by Jamie Duncan


At this point in our session, we changed our focus from Noticing and Wondering about images of mathematics, to noticing and wondering about our students’ thinking.  To do this, we viewed the following video (click here to view) of a student attempting to find the answer of what eight, nine-cent stamps would be worth:

b6

The group noticed the student in the video counting, pausing before each new decade, using two hands to “track” her thinking…  The group noticed that she used most of a 10-frame to think about counting by ones into groups of 9.

We then asked the group to consider the wonders about this student or her thinking and use these wonders to think about what they would say or do next.

  • Would you show her a strategy?
  • Would you ask a question to help you understand their thinking better?
  • Would you suggest a tool?
    Would you give her a different question?

It seemed to us, that the most common next steps might not be the ones that were effectively using our assessment of what this child was actually doing.

b7

Looking through Fosnot’s landscape we noticed that this student was using a “counting by ones” strategy (at least when confronted with 9s), and that skip-counting and repeated addition were the next strategies on her horizon.

While many teachers might want to jump into helping and showing, we invited teachers to first consider whether or not we were paying attention to what she WAS actually doing, as opposed to what she wasn’t doing.


b8

This led nicely into a conversation about the difference between Assessment and Evaluation.  We noticed that we many talk to us about “assessment”, they actually are thinking about “evaluation”.  Yet, if we are to better understand teaching and learning of mathematics, assessment seems like a far better option!

b9

So, if we want to get better at listening interpretively, then we need to be noticing more:

b10

Yet still… it is far too common for schools to use evaluative comments.  The phrases below do not sit right with me… and together we need to find ways to change the current narrative in our schools!!!

b11

b12

Evaluation practices, ranking kids, benchmarking tests… all seem to be aimed at perpetuating the narrative that some kids can’t do math… and distracts us from understanding our students’ current thinking.

So, we aimed our presentation at seeing other possibilities:

b13


To continue the presentation, we shared a few other videos of student in the processs of thinking (click here to view the video).  We paused the video directly after this student said “30ish” and asked the group again to notice and wonder… followed by thinking about what we would say/do next. b15

b16

Followed by another quick video (click here to view).  We watched the video up until she says “so it’s like 14…”.  Again, we noticed and wondered about this students’ thinking… and asked the group what they would say or do next.

b17

After watching the whole video, we discussed the kinds of questions we ask students:

b18

If we are truly aimed at “assessment”, which basically is the process of understanding our students’ thinking, then we need to be aware of the kinds of questions we ask, and our purpose for asking those questions!  (For more about this see link).


We finished our presentation off with a framework that is helpful for us to use when thinking about how our assessment data can move our class forward:

b19

We shared a selection of student work and asked the group to think about what they noticed… what they wonderered… then what they would do next.

For more about how the 5 Practices can be helpful to drive your instruction, see here.


b20

So, let’s remember what is really meant by “assessing” our students…

b21

…and be aware that this might be challenging for us…

b22

…but in the end, if we continue to listen to our students’ thinking, ask questions that will help us understand their thoughts, continue to press our students’ thinking, and bring the learning together in ways where our students are learning WITH and FROM each other, then we will be taking “a giant step toward becoming a master teacher”!


So I’ll leave you with some final thoughts:

  • What do comments sound like in your school(s)?  Are they asset based (examples of what your students ARE doing) or deficit based (“they can’t multiply”… “my low kids don’t get it…”)?
  • What do you do if you are interested in getting better at improving your assessment practices like we’ve discussed here, but your district is asking for data on spreadsheets that are designed to rank kids evaluatively?
  • What do we need to do to change the conversation from “level 2 kids” (evaluative statements that negatively impact our students) to conversations about what our students CAN do and ARE currently doing?
  •  What math knowledge is needed for us to be able to notice mathematicially important milestones in our students?  Can trajectories or landscapes or continua help us know what to notice better?

I’d love to continue the conversation about assessment in mathematics.  Leave a comment here or on Twitter @MarkChubb3 @MrBinfield


If you are interested in reading more on similar topics, might I suggest:

Or take a look at the whole slide show here

 

Strategies vs Models

Earlier this week Pam Harris wrote a thought-provoking article called “Strategies Versus Models: why this is important”. If you haven’t already read it, read it first, then come back to hear some additional thoughts…..


Many teachers around the world have started blogs about teaching, often to fulfill one or both of the following goals:

  • To share ideas/lessons with others that will inspire continued sharing of ideas/lessons; or
  • To share their reflections about how students learn and therefore what kinds of experiences we should be providing our students.

The first of these goals serves us well immediately (planning for tomorrow’s lesson or an idea to save for later) while the second goal helps us grow as reflective and knowledgeable educators (ideas that transcend lessons).  Pam’s post (which I really hope you’ve read by now) is obviously aiming for goal number two here.


Models vs Strategies

In her article, Pam has accurately described a common issue in math education – conflating models (visual representations) with strategies (methods used to figure out an answer).  Below I’ve included a caption of Cathy Fosnot’s landscape of multiplication/division.  The rectangles represent landmark strategies that students use (starting from the bottom you will find early strategies, to the top where you will find more sophisticated strategies).  Whereas the triangles represent models or representations that are used (notice models correspond to strategies nearest to them).

fosnot landscape - strategies vs models

In her post, Pam discusses 3 problems that arise when we do not fully understand the role models and stragegies:

  1. Students (and teachers) think that all strategies are equal. 
  2. Students are left thinking that there are an unlimited, vast number of “strategies” to solve a problem.
  3. Students get correct answers and are told to “do it a different way”.

I’d like to discuss how this all fits together…


Liping Ma discussed in her book Knowing and Teaching Elementary Mathematics four pieces that relate to a teacher having a Profound Understanding of Fundamental Mathematics (PUFM).  One of these features she called “Multiple Perspectives“, basically stating that PUFM teachers stress the idea that multiple solutions are possible, yet also stress the advantages and disadvantages of using certain methods in certain situations (hopefully you see the relationship between perspectives and strategies). She claimed that a PUFM teacher’s aim is to use multiple perspectives to help their students gain a flexible understanding of the content.

Many teachers have started down the path of understanding the importance of multiple perspectives.  For example, they provide problems that are open enough so students can answer them in different ways.  However, it is difficult for many teachers to both accept all strategies as valid, while also helping students see that some strategies are more mathematically sophisticated.

models and strategies2


As teachers, we need to continue to learn about how to use our students’ thinking so they can learn WITH and FROM each other.  However, this requires that we continue to better understand developmental trajectories (like Fosnot’s landscape shared above) which will help us avoid the issues Pam had discussed in her original post.


If we want to get better at helping our students know which strategies are more appropriate, then we need to learn more about developmental trajectories.

If we want teachers to know when it is appropriate to say, “can you do it a different way?” and when it is counter-productive, then we need to learn more about developmental trajectories.

If we want to know how to lead an effective lesson close, then we need to learn more about developmental trajectories.

If we want to know which visual representations we should be using in our lessons, then we need to learn more about developmental trajectories.

If we want to think deeper about which contexts are mathematically important, then we need to learn more about developmental trajectories.

If we want to continue to improve as mathematics teachers, then we need to learn more about developmental trajectories!


While I agree that it is essential that we get better at distinguishing between strategies and models, I think the best way to do this is to be immersed into the works of those who can help us learn more about how mathematics develops over time.  May I suggest taking a look at one of the following documents to help us discuss development:


Might I also suggest reading more on similar topics:

Zukei Puzzles

A little more than a year ago now, Sarah Carter shared a set of Japanese puzzles called Zukei Puzzles (see her original post here or access her puzzles here).  After having students try out the original package of 42 puzzles, and being really engaged in conversations about terms, definitions and properties of each of these shapes, I wanted to try to find more.  Having students ask, “what’s a trapezoid again?” (moving beyond the understanding of the traditional red pattern block to a more robust understanding of a trapezoid) or debate about whether a rectangle is a parallelogram and whether a parallelogram is a rectangle is a great way to experience Geometry.  However, after an exhaustive search on the internet resulting in no new puzzles, I decided to create my own samples.

DXxjSGfX0AAu9FT

 

Take a look at the following 3 links for your own copies of Zukie puzzles:

Copy of Sarah’s puzzles

Extension puzzles #1

Extension puzzles #2

Advanced Zukei Puzzles #3

I’d be happy to create more of these, but first I’d like to know what definitions might need more exploring with your students.  Any ideas would be greatly appreciated!


How to complete a Zukei puzzle:

Each puzzle is made up of several dots.  Some of these dots will be used as verticies of the shape named above the puzzle.  For example, the image below shows a trapezoid made of 4 of the dots.  The remaining dots are inconsequential to the puzzle, essentially they are used as distractors.

trap


If you enjoyed these puzzles, I recommend taking a look at Skyscraper puzzles for you to try as well.

 

An Example of “Doing Mathematics”: Creating Voronoi

I’ve been thinking a lot about how we look at academic standards (what we call curriculum expectations here in Ontario) lately.  Each person who reads a standard seems to read it through their own lens.  That is, as we read a standard, we attach what we believe is important to that standard based upon our prior experiences.  With this in mind, it might be worth looking at a few important parts of what makes up a standard (expectation) in Ontario.  Each of our standards have some/all of the following pieces:

  • Content students should be learning
  • Verbs clearly indicating the actions our students should be doing to learn the content and demonstrate understanding of the content
  • A list of tools and/or strategies students should be using

Each of these three pieces help us know both what constitutes understanding, and potentially, how we can get there. However, while our standards here in Ontario have been written to help us understand these pieces, many of our students experience them in a very disconnected way.  For example, if we see each expectation as an isolated task to accomplish, our students come to see mathematics as a never-ending list of skills to master, not as a rich set of connections and relationships.  There are so many standards to “cover” that what ends up being missed for many students is the development of each standard. The focus of teaching mathematics ends up as the teaching of the standards instead of experiencing mathematics.  We give away the ending of the story before our students even know the characters or the plot. We share the punchline without ever setting up the joke.  We measure our students’ outcomes without considering the reasoning they walk away with… while many students might be able to demonstrate a skill after some practice, it’s quite possible they don’t know how it’s helpful, how it relates to other pieces of math, and because of this, many forget everything by the next time they use the concepts the next year.

To help us think deeper about what it means to experience mathematics from the students’ point of view, Dan Meyer has been discussing building the “intellectual need” with his whole “If Math Is The Aspirin, Then How Do You Create The Headache?”.  Basically, the idea here is that before we teach the content that might be in our standards, we need to consider WHY that content is important and how we can help our students construct a need for the skill.  He has helped us think about how our students could experience the long-cut before our students ever experience the short-cut.

Let’s take a specific example of a specific standard:


construct perpendicular bisectors, using a variety of tools (e.g.,
Mira, dynamic geometry software, compass) and strategies (e.g., paper folding)


If constructing perpendicular bisectors is the Aspirin, then how can we create the headache?  How can we create a situation where our students need to do lots of perpendicular bisectors?  Well, I wonder if creating voronoi could be a possible headache.  Take a look:

A Voronoi diagram is a partitioned plane where the area within each section includes all of the possible points closest to the original “seed” (the point within each section).  So, how might students create these?  If they already knew how to create perpendicular bisectors, they could simply start by placing seeds anywhere on their page, then create perpendicular bisectors between each set of points to find each partition.  However, Dan Meyer points out how important it really is to spend the time to really develop the skill starting from where our students currently are:

“In order for the CONSTRUCTION of the perpendicular bisector to feel like aspirin, I’d want students to feel the pain that comes from using intuition alone to construct the voronoi regions. This idea ties in other talks I’ve given about developing the question and creating full stack lessons. I’d want students to estimate the regions first.

Here is a dream I had awhile ago that I haven’t been able to build anywhere yet. Excited to maybe make it at Desmos some day.” 

If you can, I’d recommend you take a look at Dan’s dream.  It really illustrates the idea of building his “full stack” lesson.  If we think back to the original standard again,

constructperpendicular bisectors, using a variety of tools (e.g.,
Mira, dynamic geometry software, compass) and strategies (e.g., paper folding)

it might be worth noting the specific pieces in orange.  I wonder, given a lesson like this, how much time would be spent allowing students opportunities to consider strategies that would make sense?  Or, how likely it would be that our students would be told which strategies/tools to use?

Below you can see the before and after images from a student’s work as they attempt to find perpendicular bisectors for each set of points.


Tasks like this do something else as well, they raise the level of cognitive demand.  Take a look at Stein et., al’s Mathematical Task Analysis Guide below:

math_task_analysis_guide - Level of Cognitive Demand

While most students might experience a concept like this in a “procedures without connections” manner, allowing students to figure out how to create voronoi brings about the need to accurately find perpendicular bisectors, and consider how long each line would be in relation to all of the other perpendicular bisectors.  This is what Stein calls “Doing Mathematics”!  And hopefully, the students in our mathematics classes are actually “Doing Mathematics” regularly.


As always, I want to leave you with a few reflective questions:

  • How often are your students engaged in “Doing Mathematics” tasks?  Is this a focus for you and your students?
  • If you were to ask your students to create voronoi, how much scaffolding would you offer?  If we provide too much scaffolding, would this task no longer be considered a “doing mathematics” task?  How would you introduce a task like this?
  • Creating a perpendicular bisector is often seen as a quick simple skill that doesn’t connect much with other standards.  However, the task shared here asks students to make connections.  Can you think of standards like this one that might not connect to other standards nicely?  How can you build a need (or create the headache as Dan says) for that skill?
  • Are you and your students “covering” standards, or are you constructing learning together?  What’s the difference here?

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

This slideshow requires JavaScript.

How Many Do You See (Part 2 of 2)

A few weeks ago I shared with you a quick blog post showing a simple worksheet at the grade 2 level – the kind of  simple worksheet that is common to many classrooms.  If you haven’t seen the image, here it is again:

DL5ysx5WkAA4O_x

As you can see, the task asks students to correctly count the number of each shape they notice.  In my first post (Part 1) I asked us a few questions to start a conversation:

  1. Pick one shape (or more if you’re adventurous)
  2. Think about what you believe the teacher’s edition would say
  3. Count how many you see
  4. Share the 3 points above as a comment here or on Twitter

I was quite happy with where some of the conversations led…

Some of the conversations revolved around the issue many have with resources perpetuating stereotypical definitions of shapes:

IMG_E6046

If we look, there are exactly 4 shapes that resemble the diagram at the top of the page labelled as “rectangle”, however, there are several different sized squares as well (a square are a special case of a rectangle).


Other conversations revolved around actually counting the number of each item:

IMG_E6044IMG_E6042IMG_E6053IMG_E6052

trapezoids 21

What interests me here is that we, as a group of math teachers, have answered this grade 2 worksheet with various answers.  Which brings about 2 important conversations:

  1. What are we looking for when students complete a worksheet or textbook questions?
  2. Are we aiming for convergent or divergent thinking?  Which of these is more helpful for our students?

What are we looking for?

Given the conversations I have had with math teachers about the worksheet being shared here, it seems like there are a few different beliefs.  Some teachers believe the activity is aimed at helping students recognize traditional shapes and identify them on the page.  Other teachers believe that this activity could potentially lead to discussions about definitions of shapes (i.e., What is a rectangle?  What is a hexagon?…) if we listen to and notice our students’ thinking about each of the shapes, then bring students together to have rich discussions.

It’s probably worth noting that the Teacher’s Edition for this worksheet includes precise answers.  If a typical teacher were to collect the students’ work and begin marking the assignment using the “answers” from the teacher’s guide, some of the students would have the “correct” answer of 8 trapezoids, but many others would likely have noticed several of the other trapezoids on the page.  If we are looking / listening for students to find the correct answer, we are likely missing out on any opportunity to learn about our students, or offer any opportunity for our students to learn themselves!

I would hope that an activity like this would provide us opportunities for our students to show what they understand, and move beyond getting answers into the territory of developing mathematical reasoning.


Convergent vs Divergent Thinking

Again, many of the teachers I have discussed this activity with have shared their interest in finding the other possible versions of each shape.  However, what we would actually do with this activity seems to be quite different for each educator.  It seems like the decisions different teachers might be making here relate to their interest in students either having convergent thinking, or divergent thinking.  Let’s take a look at a few possible scenarios:

Teacher 1:

Before students start working on the activity, the teacher explains that their job is to find shapes that look exactly like the image in the picture at the top of the page.

Teacher 2:

Before students start working on the activity, the teacher tells the students exactly how many of each shape they found, then asks students to find them.

Teacher 3:

Before students start working on the activity, the teacher explains that their job is to find as many shapes as possible.  Then further explains that there might be ones that are not traditional looking.  Then, together with students, defines criteria for each shape they are about to look for.

Teacher 4:

Before students start working on the activity, the teacher explains that their job is to find as many shapes as possible.  As students are working, they challenge students to continue to think about other possibilities.


In the above scenarios, the teachers’ goals are quite different.  Teacher 1 expects their students to spend time looking at common versions of each shape, then spot them on the page.  Teacher 2’s aim is for students to be able to think deeper about what each shape really means, hoping that they are curious about where the rest of the shapes could possibly be leading their students to challenge themselves.  Teacher 3 believes that in order for students to be successful here, that they need to provide all of the potential pieces before their students get started.  Their goal in the end is for students to use the definitions they create together in the activity.  Finally, teacher 4’s goal is for students to access the mathematics before any terms or definitions are shared.  They believe that they can continue to push students to think by using effective questioning.  The development of reasoning is this teacher’s goal.

Looking back at these 4 teachers’ goals, I notice that 2 basic things differ:

  1. How much scaffolding is provided; and
  2. When scaffolding is provided

Teachers that provide lots of scaffolding prior to a problem typically aim for students to have convergent thinking.  They provide definitions and prompts, they model and tell, they hope that everyone will be able to get the same answers.

Teachers that withhold scaffolding and expect students to do more of the thinking along the way typically aim for divergent thinking.  That is, they hope that students will have different ideas in the hopes for students to share their thinking to create more thinking in others.

Whether you believe that convergent thinking or divergent thinking is best in math, I would really like you to consider how tasks that promote divergent thinking can actually help the group come to a consensus in the end.  If I were to provide this lesson to grade 2s, I would be aiming for students to be thinking as much as possible, to push students to continue to think outside-the-box as much as possible, then make sure that in my lesson close, that we ALL understood what makes a shape a shape.


I want to leave you with a few reflective questions:

  • I provided you with a specific worksheet from a specific grade, however, I want you to now think about what you teach.  How much scaffolding do you provide?  Are you providing too much too soon?
  • Do your lessons start off with convergent thinking or divergent thinking?  Why do you do this?  Is this because you believe it is best?
  • How can you delay scaffolding and convergent thinking so that we are actually promoting our students to be actively thinking?  How can you make this a priority?
  • What lesson or warm-ups or problems have you given that are examples of what we are talking about here?
  • If we do remove some of the scaffolding will some of your students sit there not learning?  Is this a sign of them not understanding the math, or a sign of them used to being spoon-fed thinking?  What do WE need to get better at if we are to delay some of this scaffolding?

I encourage you to continue to think about what it means to help set up situations for your students to actively construct understanding:

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

P.S.  I’m still not confident how many of each shape are actually here!

How many do you see?(Part 1)

A few days ago I had the opportunity to work with a grade 2 teacher as her class was learning about Geometry.  The students started the class with a rich activity comparing and sorting a variety of standard and non-standard shapes, followed by a great discussion about several properties they had noticed.

Shortly after, students started working on following the page as independent work. Take a look:

DL5ysx5WkAA4O_x

Take a minute to try to figure out what you think the answers might be.  Scroll up and pick one of the less obvious shapes and count how many you see.

This isn’t one of those Facebook “can you find all the hidden shapes” tasks, it’s meant to be a straightforward activity for grade 2 students. However, I’m not sure what the actual answers are here.  So, I need some help…  I’d love if you could:

  • Pick one shape (or more if you’re adventurous)
  • Think about what you believe the teacher’s edition would say
  • Count how many you see
  • Share the 3 points above as a comment here or on Twitter

I’m hoping in my next post that we can discuss more than just this worksheet and make some generalizations for any grade and any topic. 

Targeted Instruction

The other day I was asked about my opinion about something called entrance slips. Curious about their thoughts first, I asked a few question that helped me understand what they meant by entrance slips, what they would be used for, and how they might believe they would be helpful. The response made me a little worried. Basically, the idea was to give something to students at the beginning of class to determine gaps, then place students into groups based on student “needs”.  I’ll share my issues with this in a moment…  Once I had figured out how they planned on using them, I asked what the different groups would look like.  Specifically, I asked what students in each group would be learning. They explained that the plan was to give an entrance slip at the beginning of a Geometry unit. The first few questions on this entrance slip would involve naming shapes and the next few about identifying isolated properties of shapes. Those who couldn’t name shapes were to be placed into a group that learns about naming shapes, those who could name shapes but didn’t know all of the properties were to go into a second group, and those who did well on both sections would be ready to do activities involving sorting shapes.  In our discussion I continually heard the phrase “Differentiated Instruction”, however, their description of Differentiated Instruction definitely did not match my understanding (I’ve written about that here). What was being discussed here with regards to using entrance slips I would call “Individualized Instruction”.  The difference between the two terms is more than a semantic issue, it gets to the heart of how we believe learning happens, what our roles are in planning and assessing, and ultimately who will be successful.  To be clear, Differentiated Instruction involves students achieving the same expectations/standards via different processes, content and/or product, while individualized or targeted instruction is about expecting different things from different students.


Issues with Individualized / Targeted Instruction

Individualized or targeted instruction makes sense in a lot of ways.  The idea is to figure out what a student’s needs are, then provide opportunities for them to get better in this area.  In practice, however, what often happens is that we end up setting different learning paths for different students which actually creates more inequities than it helps close gaps.  In my experience, having different students learning different things might be helpful to those who are being challenged, but does a significant disservice to those who are deemed “not ready” to learn what others are learning.  For example, in the 3 pathways shared above, it was suggested that the class be split into 3 groups; one working on defining terms, one learning about properties of shapes and the last group would spend time sorting shapes in various ways.  If we thought of this in terms of development, each group of students would be set on a completely different path.  Those working on developing “recognition” tasks (See Van Hiele’s Model below) would be working on low-level tasks.  Instead of providing experiences that might help them make sense of Geometric relationships, they would be stuck working on tasks that focus on memory without meaning.

Figure-1-Examples-of-interview-items-aligned-with-van-Hiele-levels

When we aim to find specific tasks for specific students, we assume that students are not capable of learning things others are learning.  This creates low expectations for our students!  Van de Walle says it best in his book Teaching Student Centered Mathematics:

Determining how to place students in groups is an important decision.  Avoid continually grouping by ability.  This kind of grouping, although well-intentioned, perpetuates low levels of learning and actually increases the gap between more and less dependent students.  

Targeted instruction might make sense on paper, but there are several potential flaws:

  • Students enter into tracks that do not actually reflect their ability.  There is plenty of research showing that significant percentages of students are placed in the wrong grouping by their teachers.  Whether they have used some kind of test or not, groupings are regularly flawed in predicting what students are potentially ready for.
  • Pre-determining who is ready for what learning typically results in ability grouping, which is probably the strongest fixed mindset message a school can send students.  Giving an entrance ticket that determines certain students can’t engage in the learning others are doing tells students who is good at math, and who isn’t.  Our students are exquisitely keen at noticing who we believe can be successful, which shapes their own beliefs about themselves.
  • The work given to those in lower groups is typically less cognitively demanding and results in minimal learning.  The intent to “fill gaps” or “catch kids up” ironically increases the gap between struggling students and more independent learners.  Numerous studies have confirmed what Hoffer (1992) found: “Comparing the achievement growth of non-grouped students and high- and low-group students shows that high-group placement generally has a weak positive effect while low-group placement has a stronger negative effect. Ability grouping thus appears to benefit advanced students, to harm slower students.

 

The original conversation I had about Entrance Tickets illustrated a common issue we have.  We notice that there are students in our rooms who come into class in very different places in their understanding of a given topic.  We want to make sure that we provide things that our students will be successful with… However, this individualization of instruction does the exact opposite of what differentiated instruction intends to do.  Differentiated instruction in a mathematics class is realized when we provide experiences for our students where everyone is learning what they need to learn and can demonstrate this learning in different ways.  The assumption, however, is that WE are the ones that should be determining who is learning what and how much.  This just doesn’t make sense to me!  Instead of using entrance tickets, we ended up deciding to use this problem from Van de Walle so we could reach students no matter where they were in their understanding.  Instead of a test to determine who is allowed to learn what, we allowed every student to learn!  This needs to be a focus!

If we are ever going to help all of our students learn mathematics and believe that they are capable of thinking mathematically, then we need to provide learning experiences that ALL of our students can participate in.  These experiences need to:

  • Have multiple entry points for students to access the mathematics
  • Provide challenge for all students (be Problem-Based)
  • Allow students to actively make sense of the mathematics through mathematical reasoning
  • Allow students opportunities to students to express their understanding in different ways or reach an understanding via different strategies

Let’s avoid doing things that narrow our students’ learning like using entrance tickets to target instruction!  Let’s commit to a view of differentiated instruction where our students are the ones who are differentiating themselves (because the tasks allowed for opportunities to do things differently)!  Let’s continue to get better at leveraging students’ thinking in our classrooms to help those who are struggling!  Let’s believe that all of our students can learn!  


I want to leave you with a few reflective questions:

  • Why might conversations about entrance tickets and other ways to determine students ability be more common today?  We need to use our students’ thinking to guide our instruction, but other than entrance cards, how can we do this in ways that actually help those who are struggling?
  • Is a push for data-driven instruction fueling this type of decision making?  If so, who is asking for the data?  Are there other sources of data that you can be gathering that are healthier for you and your students?
  • If you’ve ever used entrance tickets or diagnostics, followed by ability groups, how did those on the bottom group feel?  Do you see the same students regularly in the bottom group?  Do you see a widening gap between those dependent on you and those who are more independent?
  • Where do you look for learning experiences that offer this kind of differentiated instruction?  Is it working for the students in your class that are struggling?

I encourage you to continue to think about what it means to Differentiate your Instruction.  Here are a few pieces that might help:

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).

Co-Teaching in Math Class

For the past few years I have had the privilege of being an instructional coach working with amazing teachers in amazing schools.  It is hard to explain just how much I’ve learned from all of the experiences I’ve had throughout this time.  The position, while still relatively new, has evolved quite a bit into what it is today, but one thing that has remained a focus is the importance of Co-Planning, Co-Teaching and Co-Debriefing.  This is because at the heart of coaching is the belief that teachers are the most important resource we have – far more important than programs or classroom materials – and that developing and empowering teachers is what is best for students.

While the roles of Co-Planning, Co-Teaching and Co-Debriefing are essential parts of coaching, I’m not sure that everyone would agree on what they actually look like in practice?

Take for example co-teaching, what does it mean to co-teach?  Melynee Naegele, Andrew Gael and Tina Cardone shared the following graphic at this year’s Twitter Math Camp to explain what co-teaching might look like:
co-teaching models

Above you can see 6 different models described as Co-teaching.  While I completely understand that these 6 models might be common practices in schools when 2 teachers are in the same room, and while I am not speaking out against any of these models, I’m not sure I agree that all of these models are really co-teaching.  Think about it, which of these models would help teachers learn from and with each other?  Which of these promote students learning from 2 teachers who are working together?  Which of these models promotes teachers separating duties / responsibilities in a more isolated approach?

I will admit that after looking at the graphic (without being part of the learning from #TMC17) I was confused.  So, I went on Twitter to ask the experts (Melynee Naegele, Andrew Gael, Tina Cardone and others who were present at the sessions) to find out more about how co-teaching was viewed.  I was interested to find out from reading through their slideshows and from Mary Dooms that often, the “co-teacher” is a Special Education teacher and not an Instructional or Math Coach.

coteaching1

So, I thought it might be worth picking apart a few different roles to think more about what our practices look like in our schools.


Co-Teaching as a Special Education Teacher

Special Education teachers and Interventionists do really important work in our schools.  They have the potential to be a voice for those who are often not advocating for their own education and can offer many great strategies for both classroom teachers and students to help improve educational experiences.  When given the opportunity to co-teach with a classroom teacher though, I would be curious as to which models typically exist?

co-teaching models

In my experience, the easiest to prescribe models would be model 3 or 4, parallel teaching / alternative teaching.  Working with a large class of mixed-ability students isn’t easy, so many classroom teachers are quite happy to hear that a special education teacher or interventionist is willing to take half or some of the students and do something different for them.  I wonder though, is this practice promoting exclusion, segregation, integration or inclusion?

 

img_5080
See Tim Villegas’ article

While I understand that there are times when students might need to be brought together in a small group for specific help, I think we might be missing some really important learning opportunities.

At the heart of the problem is how difficult it is for classroom teachers to differentiate instruction in ways that allow our students to all be successful without sending fixed mindset messages via ability grouping.  Special Education teachers and interventionists have the ability, however, to have powerful conversations with classroom teachers to help create or modify lessons so they are more open and allow access for all of our students!  Co-teaching models 3 and 4 don’t allow us to have conversations that will help us learn better how to help those who are currently struggling with their mathematics.  Instead, those models ask for someone else to fix whatever problems might be existing.  The beliefs implied with these models are that the students need fixing, we don’t need to change!  Rushing for intervention doesn’t help us consider what ways we can support classroom teachers get better at educating those who have been marginalized.

intervention3

The more time Special Education teachers and interventionists can spend in classrooms talking to classroom teachers, being part of the learning together and helping plan open tasks/problems that will support a wider group of students… the better the educational experiences will be for ALL of our students!  This raises the expectations of our students, while allowing US as teachers to co-learn together.  I think Special Education teachers and Interventionists need to spend more time doing models 1, 5 or 6, then, when appropriate, use other models on an as-needed basis.


 

Co-Teaching as a Coach

The role of instructional coaches or math coaches is quite different from that of a Special Education teacher or Interventionist though.  While Special Education teachers and Interventionists focus their thoughts on what is best for specific students who might be struggling in class, Coaches’ are concerned more with content, pedagogy, the beliefs we have about what is important, and the million decisions we make in-the-moment while teaching.  Coaching is a very personal role.  Together, a coach and a classroom teacher make their decision making explicit and together they learn and grow as professionals.  The role of coaches is to help the teachers you work with slow down their thinking processes… and this requires the ability to really listen (something I am continually trying to get better at).

Coaching involves a lot of time co-planning, co-teaching and co-debriefing.  However, in order for co-teaching to be effective, as much as possible, the coach and the classroom teacher need to be together!  Being present in the same place allows opportunities for both professionals to discuss important in-the-moment decisions and notice things the other might not have noticed.  It allows opportunities for reflection after a lesson because you have both experienced the same lesson.  Models 1, 5 and 6 seem to be the only models that would make sense for a coach.  Otherwise, how could a coach possibly coach?

If you haven’t seen how powerful it can be for teachers to learn together, I strongly suggest that you take a look at The Teaching Channel’s video showing Teacher Time Outs here.

To me, the more we as educators can talk about our decisions, the more we can learn together, the more we can try things out together……. the better we will get at our job!  We can’t do this (at least not well) if co-teaching happens in different places and/or with different students!


As always, I want to leave you with a few reflective questions:

  • How would you define co-teaching?  What characteristics do you think are needed in order to differentiate it from teaching?
  • If you don’t have someone to co-teach with, how can you make it a priority?  How can your administrator help create conditions that will allow you to have the rich conversations needed for us to learn and grow?
  • If you are a Special Education teacher or an interventionist, how receptive are classroom teachers to discuss the needs of those that are struggling with math?  Are conversations about what we need to do differently for a small group, or are conversations about what we can do better for all students?
  • If you are a math coach or an instructional coach, what are the expectations from a classroom teacher for you?  How can you build a relationship where the two of you feel comfortable to learn and try things together?  What do conversations sound like after co-teaching?
  • Are specific models of co-teaching being suggested to you by others?  By whom?  Do you have the opportunity to have a voice to try something you see as being valuable?
  • School boards and districts often aim their sights at short-term goals like standardized testing so many programs are put into place to give specific students extra assistance.  But does your school have long-term goals too?  At the end of the year, has co-teaching helped the classroom teacher better understand how to meet the various needs of students in a mixed ability classroom?

For more on this topic I encourage you to read Unintended Messages  or How Our District Improved

I’d love to continue the conversation.  Write a response, or send me a message on Twitter ( @markchubb3 ).