The role of “practice” in mathematics class.

A few weeks ago a NYTimes published an article titled, Make Your Daughter Practice Math. She’ll Thank You Later, an opinion piece that, basically, asserts that girls would benefit from “extra required practice”.  I took a few minutes to look through the comments (which there are over 600) and noticed a polarizing set of personal comments related to what has worked or hasn’t worked for each person, or their own children.  Some sharing how practicing was an essential component for making them/their kids successful at mathematics, and others discussing stories related to frustration, humiliation and the need for children to enjoy and be interested in the subject.

Instead of picking apart the article and sharing the various issues I have with it (like the notion of “extra practice” should be given based on gender), or simply stating my own opinions, I think it would be far more productive to consider why practice might be important and specifically consider some key elements of what might make practice beneficial to more students.


To many, the term “practice” brings about childhood memories of completing pages of repeated random questions, or drills sheets where the same algorithm is used over and over again.  Students who successfully completed the first few questions typically had no issues completing each and every question.  For those who were successful, the belief is that the repetition helped.  For those who were less successful, the belief is that repeating an algorithm that didn’t make sense in the first place wasn’t helpful…  even if they can get an answer, they might still not understand (*Defining 2 opposing definitions of “understanding” here).

“Practice” for both of the views above is often thought of as rote tasks that are devoid of thinking, choices or sense making.  Before I share with you an alternative view of practice, I’d like to first consider how we have tackled “practice” for students who are developing as readers.

If we were to consider reading instruction for a moment, everyone would agree that it would be important to practice reading, however, most of us wouldn’t have thoughts of reading pages of random words on a page, we would likely think about picture books.  Books offer many important factors for young readers.  Pictures might help give clues to difficult words, the storyline offers interest and motivation to continue, and the messages within the book might bring about rich discussions related to the purpose of the book.  This kind of practice is both encourages students to continue reading, and helps them continue to get better at the same time.  However, this is very different from what we view as math “practice”.

In Dan Finkel’s Ted Talk (Five Principles of Extraordinary Math Teaching) he has attempted to help teachers and parents see the equivalent kind of practice for mathematics:

Finkel Quote


Below is a chart explaining the role of practice as it relates to what Dan Finkel calls play:

practice2

Take a look at the “Process” row for a moment.  Here you can see the difference between a repetitive drill kind of practice and the “playful experiences” kind of  practice Dan had called for.  Let’s take a quick example of how practice can be playful.


Students learning to add 2-digit numbers were asked to “practice” their understanding of addition by playing a game called “How Close to 100?”.  The rules:

  • Roll 2 dice to create a 2-digit number (your choice of 41 or 14)
  • Use base-10 materials as appropriate
  • Try to get as close to 100 as possible
  • 4th role you are allowed eliminating any 1 number IF you want

close to 100b

What choice would you make???  Some students might want to keep all 4 roles and use the 14 to get close to 100, while other students might take the 41 and try to eliminate one of the roles to see if they can get closer.


When practice involves active thinking and reasoning, our students get the practice they need and the motivation to sustain learning!  When practice allows students to gain a deeper understanding (in this case the visual of the base-10 materials) or make connections between concepts, our students are doing more than passive rule following – they are engaging in thinking mathematically!


In the end, we need to take greater care in making sure that the experiences we provide our students are aimed at the 5 strands shown below:

strands of mathematical proficency.png
Adding It Up: Helping Children Learn Mathematics

You might also be interested in thinking about how we might practice Geometrical terms/properties, or spatial reasoning, or exponents, or Bisectors


So I will leave you with some final thoughts:

  • What does “practice” look like in your classroom?  Does it involve thinking or decisions?  Would it be more engaging for your students to make practice involve more thinking?
  • How does this topic relate to the topic of “engagement”?  Is engagement about making tasks more fun or about making tasks require more thought?  Which view of engagement do you and your students subscribe to?
  • What does practice look like for your students outside of school?  Is there a place for practice at home?
  • Which of the 5 strands (shown above) are regularly present in your “practice” activities?  Are there strands you would like to make sure are embedded more regularly?

I’d love to continue the conversation about “practicing” mathematics.  Leave a comment here or on Twitter @MarkChubb3

 

Advertisements

Making Math Visual

A few days ago I had the priviledge of presenting at MAC2 to a group of teachers in Orillia on the topic of “Making Math Visual”.   If interested, here are some of my talking points for you to reflect on:a1

To get us started I shared an image created by Christopher Danielson and asked the group what they noticed:

a2

We noticed quite a lot in the image… and did a “how many” activity sharing various numbers we saw in the image.  After our discussions I explained that I had shared the same picture with a group of parents at a school’s parent night followed by the next picture.

a3

I asked the group of teachers what mathematics they noticed here… then how they believed parents might have answered the question.  While we, as math teachers, saw patterns in the placements of utensils, shapes and angles around the room, quantities of countable items, multiplicative relationships between utensils and place settings, volume of wine glasses, differences in heights of chairs, perimeter around the table…..  the group correctly guessed that many parents do not typically notice the mathematics around them.

So, my suggestion for the teachers in the room was to help change this:

a5

I then asked the group to do a simple task for us to learn from:

a6

After a few minutes of thinking, I shared some research of the different ways we use fractions:

When we looked at the ways we typically use fractions, it’s easy to notice that WE, as teachers, might need to consider how a focus on representations might help us notice if we are providing our students with a robust (let’s call this a “relational“) view of the concepts our students are learning about.

a13

Data taken from 1 school’s teachers:

a14

We continued to talk about Liping Ma’s work where she asked teachers to answer and represent the following problem:

a15

Followed by a quick story of when a student told me that the following statement is true (click here for the full story).

a17

So, why should we focus on making math visual?

a18


We then explored a statement that Jo Boaler shared in her Norms document:

a19

…and I asked the group to consider if there is something we learn in elementary school that can’t be represented visually?

If you have an idea to the previous question, I’d love to hear it, because none of us could think of a concept that can’t be represented visually.


I then shared a quick problem that grade 7 students in one of my schools had done (see here for the description):

a20

Along with a few different responses that students had completed:

a21

Most of the students in the class had responded much like the image above.  Most students in the class had confused linear metric relationships (1 meter = 100 cm) with metric units of area (1 meter squared is NOT the same as 100cm2).

a22

In fact, only two students had figured out the correct answer… which makes sense, since the students in the class didn’t learn about converting units of area through visuals.

a23

We wrapped up with a few suggestions:

a25

a26

And finally some advice about what we DON’T mean when talking about making mathematics visual:

a27

a28

You might recognize the image above from Graham Fletcher’s post/video where he removed all of the fractional numbers off each face in an attempt to make sure that the tools were used to help students learn mathematics, instead of just using them to get answers.

a29


I want to leave you with a few reflective questions:

  • Can all mathematics concepts in elementary school be represented visually?
  • Why might a visual representation be helpful?
  • Are some representations more helpful than others?
  • How important is it that our students notice the mathematics around them?
  • How might a focus on visual representations help both us and our students deepen our understanding of the mathematics we are teaching/learning?

I’d love to continue the conversation.  Feel free to write a response, or send me a message on Twitter ( @markchubb3 ).


If you are interested in all of the slides, you can take a look here

 

 

The Importance of Contexts and Visuals

My wife Anne-Marie isn’t always impressed when I talk about mathematics, especially when I ask her to try something out for me, but on occasion I can get her to really think mathematically without her realizing how much math she is actually doing.  Here’s a quick story about one of those times, along with some considerations:


A while back Anne-Marie and I were preparing lunch for our three children.  It was a cold wintery day, so they asked for Lipton Chicken Noodle Soup.  If you’ve ever made Lipton Soup before you would know that you add a package of soup mix into 4 cups of water.

Lipton soup

Typically, my wife would grab the largest of our nesting measuring cups (the one marked 1 cup), filling it four times to get the total required 4 cups, however, on this particular day, the largest cup available was the 3/4 cup.

nesting cups.JPG

Here is how the conversation went:

Anne-Marie:  How many of these (3/4 cups) do I need to make 4 cups?

Me:  I don’t know.  How many do you think?  (attempting to give her time to think)

Anne-Marie:  Well… I know two would make a cup and a half… so… 4 of these would make 3 cups…

Me: OK…

Anne-Marie:  So, 5 would make 3 and 3/4 cups.

Me:  Mmhmm….

Anne-Marie:  So, I’d need a quarter cup more?

Me:  So, how much of that should you fill?  (pointing to the 3/4 cup in her hand)

Anne-Marie:  A quarter of it?  No, wait… I want a quarter of a cup, not a quarter of this…

Me:  Ok…

Anne-Marie:  Should I fill it 1/3 of the way?

Me:  Why do you think 1/3?

Anne-Marie:  Because this is 3/4s, and I only need 1 of the quarters.


The example I shared above illustrates sense making of a difficult concept – division of fractions – a topic that to many is far from our ability of sense making.  My wife, however, quite easily made sense of the situation using her reasoning instead of a formula or an algorithm.  To many students, however, division of fractions is learned first through a set of procedures.

I have wondered for quite some time why so many classrooms start with procedures and algorithms unill I came across Liping Ma’s book Knowing and Teaching Mathematics.  In her book she shares what happened when she asked American and Chinese teachers these 2 problems:

liping ma1

Here were the results:

Liping ma2

Now, keep in mind that the sample sizes for each group were relatively small (23 US teachers and 72 Chinese teachers were asked to complete two tasks), however, it does bring bring about a number of important questions:

  • How does the training of American and Chinese teachers differ?
  • Did both groups of teachers rely on the learning they had received as students, or learning they had received as teachers?
  • What does it mean to “Understand” division of fractions?  Computing correctly?  Beging able to visually represent what is gonig on when fractions are divided? Being able to know when we are being asked to divide?  Being able to create our own division of fraction problems?
  • What experiences do we need as teachers to understand this concept?  What experiences should we be providing our students?

Visual Representations

In order to understand division of fractions, I believe we need to understand what is actually going on.  To do this, visuals are a necessity!  A few examples of visual representations could include:

A number line:

three quarters NL

A volume model:

GlassMeasuringCup32oz117022_x

An area model:


Starting with a Context

Starting with a context is about allowing our students to access a concept using what they already know (it is not about trying to make the math practical or show students when a concept might be used someday).  Starting with a context should be about inviting sense-making and thinking into the conversation before any algorithm or set of procedures are introduced.  I’ve already shared an example of a context (preparing soup) that could be used to launch a discussion about division of fractions, but now it’s your turn:

Design your own problem that others could use to launch a discussion of division of fractions.  Share your problem!  


A few things to reflect on:

As always, I’d love to hear your thoughts.  Leave a reply here on Twitter (@MarkChubb3)